Skip to main content
Log in

Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Most flavonoids are glycosylated and the nature of the attached sugar can strongly affect their physiological properties. Although many flavonoid glycosides have been synthesized in Escherichia coli, most of them are glucosylated. In order to synthesize flavonoids attached to alternate sugars such as glucuronic acid and galactoside, E. coli was genetically modified to express a uridine diphosphate (UDP)-dependent glycosyltransferase (UGT) specific for UDP-glucuronic acid (AmUGT10 from Antirrhinum majus or VvUGT from Vitis vinifera) and UDP-galactoside (PhUGT from Petunia hybrid) along with the appropriate nucleotide biosynthetic genes to enable simultaneous production of their substrates, UDP-glucuronic acid and UDP-galactose. To engineer UDP-glucuronic acid biosynthesis, the araA gene encoding UDP-4-deoxy-4-formamido-L-arabinose formyltransferase/UDP-glucuronic acid C-4″ decarboxylase, which also used UDP-glucuronic acid as a substrate, was deleted in E. coli, and UDP-glucose dehydrogenase (ugd) gene was overexpressed to increase biosynthesis of UDP-glucuronic acid. Using these strategies, luteolin-7-O-glucuronide and quercetin-3-O-glucuronide were biosynthesized to levels of 300 and 687 mg/L, respectively. For the synthesis of quercetin 3-O-galactoside, UGE (encoding UDP-glucose epimerase from Oryza sativa) was overexpressed along with a glycosyltransferase specific for quercetin and UDP-galactose. Using this approach, quercetin 3-O-galactoside was successfully synthesized to a level of 280 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balasuriya N, Rupasinghe HP (2012) Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem 135:2320–2325

    Article  CAS  PubMed  Google Scholar 

  • Benedek B, Geisz N, Jäger W, Thalhammer T, Kopp B (2006) Choleretic effects of yarrow (Achillea millefolium sl) in the isolated perfused rat liver. Phytomedicine 13:702–706

    Article  CAS  PubMed  Google Scholar 

  • Bowles D, Lim E-K, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597

    Article  CAS  PubMed  Google Scholar 

  • Brazier-Hicks M, Evans KM, Gershater MC, Puschmann H, Steel PG, Edwards R (2009) The C-glycosylation of flavonoids in cereals. J Biol Chem 284:17926–17934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breazeale SD, Riberio AA, McClerren AL, Raetz CRH (2005) A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose. J Biol Chem 280:14154–14167

    Article  CAS  PubMed  Google Scholar 

  • Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86:1293–1312

    Article  CAS  PubMed  Google Scholar 

  • Flower ZL, Koffas MA (2009) Biosynthesis and biotechnological production of flavanones: current state and perspectives. Appl Microbiol Biotechnol 83:799–808

    Article  Google Scholar 

  • Han SH, Kim B-G, Yoon JA, Chong Y, Ahn J-H (2014) Synthesis of flavonoid O-pentosides by Escherichia coli through engineering nucleotide sugar synthesis pathway and glycosyltransferase. Appl Env Microbiol 80:2754–2762

    Article  CAS  Google Scholar 

  • He X-Z, Li W-S, Blount JW, Dixon RA (2008) Regioselective synthesis of plant (iso)flavone glycosides in Escherichia col. Appl Microbiol Biotechnol 80:252–260

    Article  Google Scholar 

  • Ho L, Ferruzzi MG, Janle EM, Wang J, Gong B, Chen TY, Lobo J, Cooper B, Wu QL, Talcott ST, Percival SS, Simon JE, Pasinetti GM (2013) Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J 27:769–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horinouchi S (2008) Combinatorial biosynthesis of non-bacterial and unnatural flavonoids, stilbenoids, and curcuminoids by microorganisms. J Antibiot 6:709–728

    Article  Google Scholar 

  • Juergenliemk G, Boje K, Huewel S, Lohmann C, Galla HJ, Nahrstedt A (2003) In vitro studies indicate that miquelianin (quercetin 3-O-beta-D-glucuronopyranoside) is able to reach the CNS from the small intestine. Planta Med 69:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim B-G, Lee Y, Ryu JY, Lim Y, Hur H-G, Ahn J-H (2005) Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J Biotech 115:155–162

    Article  Google Scholar 

  • Kim BG, Kim H, Hur HG, Lim Y, Ahn J-H (2006) Regioselectivity of 7-O-methyltransferase of poplar to flavones. J Biotech 138:155–162

    Google Scholar 

  • Kim S-K, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn J-H (2009) Cloning and characterization of the UDP glucose/galactose epimerases of Oryza sativa. J Kor Soc Appl Biol Chem 52:315–320

    Article  CAS  Google Scholar 

  • Kim B-G, Jung NR, Joe EJ, Hur H-G, Lim Y, Chong Y, Ahn J-H (2010) Bacterial synthesis of a flavonoid deoxyaminosugar conjugate in Escherichia coli expressing a glycosyltransferase of Arabidopsis thaliana. ChemBioChem 11:2389–2392

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Um JY, Lee JY (2011) Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages. Am J Chin Med 39:171–181

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Kim HJ, Ahn J-H (2012a) Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. J Agr Food Chem 60:11143–11148

    Article  CAS  Google Scholar 

  • Kim B-G, Sung SH, Ahn J-H (2012b) Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2. Appl Microbiol Biot 93:2447–2453

    Article  CAS  Google Scholar 

  • Kim MJ, Kim B-G, Ahn J-H (2013a) Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biot 97:7195–7204

    Article  CAS  Google Scholar 

  • Kim HJ, Kim BG, Ahn J-H (2013b) Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases. Appl Microbiol Biot 97:5275–5282

    Article  CAS  Google Scholar 

  • Ko JH, Kim BG, Ahn J-H (2006) Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiol Lett 258:263–268

    Article  CAS  Google Scholar 

  • Lee YJ, Jeon Y, Lee JS, Kim BG, Lee CH, Ahn J-H (2007) Enzymatic synthesis of phenolic CoAs using 4-coumarate:coenzyme A ligase (4CL) from rice. Bull Kor Chem Soc 28:365–366

    Article  CAS  Google Scholar 

  • Lim E-K, Ashford DA, Hou B, Jackson RG, Bowles DJ (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotech Bioeng 87:623–631

    Article  CAS  Google Scholar 

  • Lim E-K, Ashford DA, Bowles DJ (2006) The synthesis of small-molecule rhamnosides through the rational design of a whole-cell biocatalysis system. ChemBioChem 7:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MAG (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Env Microbiol 77:3451–3460

    Article  CAS  Google Scholar 

  • Miller KD, Guyon V, Evans JN, Shuttleworth WA, Taylor LP (1999) Purification cloning and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrid. J Biol Chem 274:34011–34019

    Article  CAS  PubMed  Google Scholar 

  • Noguchi A, Horikawa M, Fukui Y, Fukuchi-Mizutani M, Luchi-Okada A, Ishiguro M, Kiso Y, Nakayama T, Ono E (2009) Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales. Plant Cell 21:1556–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oka T, Jigami Y (2006) Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Sacchromyces cerevisiae. FEBS J 273:2645–2657

    Article  CAS  PubMed  Google Scholar 

  • Orhan F, Gulluce M, Ozkan H, Alpsoy L (2013) Determination of the antigenotoxic potencies of some luteolin derivatives by using a eukaryotic cell system Saccharomyces cerevisiae. Food Chem 141:366–372

    Article  CAS  PubMed  Google Scholar 

  • Pandey RP, Malla S, Simkhada B, Kim B-G, Sohng JG (2013) Production of 3-O-xylosyl quercetin in Escherichia coli. Appl Microbiol Biotechnol 97:1889–1901

    Article  CAS  PubMed  Google Scholar 

  • Reiter W-D (2008) Biochemical genetics of nucleotide sugar interconversion reactions. Cur Opin Plant Biol 11:236–243

    Article  CAS  Google Scholar 

  • Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Met Eng 13:392–400

    Article  CAS  Google Scholar 

  • Seifert GJ (2004) Nucleotide sugar interconversion and cell wall biosynthesis: how to bring the inside to the outside. Cur Opin Plant Biol 7:277–284

    Article  CAS  Google Scholar 

  • Simkhada D, Kurumbang NP, Lee HC, Sohng JK (2010) Exploration of glycosylated flavonoids from metabolically engineered E coli. Biotech Biopro Eng 15:754–760

    Article  CAS  Google Scholar 

  • Vogt T, Jones P (2001) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  Google Scholar 

  • Winkel-Shirely B (2001) Flavonoid biosynthesis. a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  Google Scholar 

  • Xiao J, Muzashvilli TS, Georgiev MI (2014) Advances in the biotechnological glycosylation of valuable flavonoids. Biotech Advan 32:1145–1156

    Article  CAS  Google Scholar 

  • Yang T, Bar-Peled Y, Smith JA, Glushka J, Bar-Peled M (2011) In-microbe formation of nucleotide sugars in engineered Escherichia coli. Anal Biochem 421:691–698

    Article  PubMed  Google Scholar 

  • Yoon J-A, Kim B-G, Lee WJ, Lim Y, Chong Y, Ahn J-H (2012) Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli. Appl Env Microbiol 78:4256–4262

    Article  CAS  Google Scholar 

  • Zheng M, Liu C, Pan F, Shi D, Zhang Y (2012) Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: possible cellular mechanisms. Phytomedicine 19:145–149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (PJ00948301), Rural Development Administration, Basic Science Research Program (NRF-2013R1A1A2057804), and Priority Research Centers Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology 2009–0093824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Hoon Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Lee, H.R., Park, Ks. et al. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Appl Microbiol Biotechnol 99, 2233–2242 (2015). https://doi.org/10.1007/s00253-014-6282-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6282-6

Keywords

Navigation