Skip to main content
Log in

Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Radial k-space sampling techniques have been shown to reduce motion artifacts in adult abdominal MRI.

Objective

To compare a T2-weighted radial k-space sampling MRI pulse sequence (BLADE) with standard respiratory-triggered T2-weighted turbo spin echo (TSE) in pediatric abdominal imaging.

Materials and methods

Axial BLADE and respiratory-triggered turbo spin echo sequences were performed without fat suppression in 32 abdominal MR examinations in children. We retrospectively assessed overall image quality, the presence of respiratory, peristaltic and radial artifact, and lesion conspicuity. We evaluated signal uniformity of each sequence.

Results

BLADE showed improved overall image quality (3.35 ± 0.85 vs. 2.59 ± 0.59, P < 0.001), reduced respiratory motion artifact (0.51 ± 0.56 vs. 1.89 ± 0.68, P < 0.001), and improved lesion conspicuity (3.54 ± 0.88 vs. 2.92 ± 0.77, P = 0.006) compared to respiratory triggering turbo spin-echo (TSE) sequences. The bowel motion artifact scores were similar for both sequences (1.65 ± 0.77 vs. 1.79 ± 0.74, P = 0.691). BLADE introduced a radial artifact that was not observed on the respiratory triggering-TSE images (1.10 ± 0.85 vs. 0, P < 0.001). BLADE was associated with diminished signal variation compared with respiratory triggering-TSE in the liver, spleen and air (P < 0.001).

Conclusion

The radial k-space sampling technique improved the quality and reduced respiratory motion artifacts in young children compared with conventional respiratory-triggered turbo spin-echo sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719

    Article  PubMed  Google Scholar 

  2. Pipe JG (1999) Periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI: application to motion correction. In: 7th scientific meeting of the ISMRM, Philadelphia, pp 22–28

  3. Dietrich TJ, Ulbrich EJ, Zanetti M et al (2011) PROPELLER technique to improve image quality of MRI of the shoulder. AJR Am J Roentgenol 197:1093–1100

    Article  Google Scholar 

  4. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  CAS  PubMed  Google Scholar 

  5. Forbes KP, Pipe JG, Bird CR et al (2001) PROPELLER MRI: clinical testing of a novel technique for quantification and compensation of head motion. J Magn Reson Imaging 14:215–222

    Article  CAS  PubMed  Google Scholar 

  6. Pipe JG, Zwart N (2006) Turboprop: improved PROPELLER imaging. Magn Reson Med 55:380–385

    Article  PubMed  Google Scholar 

  7. Tamhane AA, Arfanakis K (2009) Motion correction in periodically‐rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and turboprop MRI. Magn Reson Med 62:174–182

    Article  PubMed Central  PubMed  Google Scholar 

  8. Von Kalle T, Blank B, Fabig-Moritz C et al (2010) Diagnostic relevant reduction of motion artifacts in the posterior fossa by syngo BLADE imaging. MAGNETOM Flash 43:6–11

    Google Scholar 

  9. Hirokawa Y, Isoda H, Maetani YS et al (2009) Hepatic lesions: improved image quality and detection with the periodically rotated overlapping parallel lines with enhanced reconstruction technique—evaluation of SPIO-enhanced T2-weighted MR images. Radiology 251:388–397

    Article  PubMed  Google Scholar 

  10. Lane BF, Vandermeer FQ, Oz RC et al (2011) Comparison of sagittal T2-weighted BLADE and fast spin-echo MRI of the female pelvis for motion artifact and lesion detection. AJR Am J Roentgenol 197:307–313

    Article  Google Scholar 

  11. Hirokawa Y, Isoda H, Maetani YS et al (2008) MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique. AJR Am J Roentgenol 191:1154–1158

    Article  PubMed  Google Scholar 

  12. Forbes KP, Pipe JG, Karis JP et al (2003) Brain imaging in the unsedated pediatric patient: comparison of periodically rotated overlapping parallel lines with enhanced reconstruction and single-shot fast spin-echo sequences. AJNR Am J Neuroradiol 24:794–798

    PubMed  Google Scholar 

  13. Deng J, Miller FH, Salem R et al (2006) Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol 41:769–775

    Article  PubMed  Google Scholar 

  14. Hirokawa Y, Isoda H, Maetani YS et al (2008) Evaluation of motion correction effect and image quality with the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (BLADE) and parallel imaging acquisition technique in the upper abdomen. J Magn Reson Imaging 28:957–962

    Article  PubMed  Google Scholar 

  15. Michaely HJ, Kramer H, Weckbach S et al (2008) Renal T2‐weighted turbo‐spin‐echo imaging with BLADE at 3.0 tesla: initial experience. J Magn Reson Imaging 27:148–153

    Article  PubMed  Google Scholar 

  16. Deng J, Omary RA, Larson AC (2008) Multishot diffusion‐weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 59:947–953

    Article  PubMed  Google Scholar 

  17. Alkan Ö, Kizilkilic O, Yildirim T et al (2009) Comparison of contrast-enhanced T1-weighted FLAIR with BLADE, and spin-echo T1-weighted sequences in intracranial MRI. Diagn Interv Radiol 15:75–80

    PubMed  Google Scholar 

  18. Fries P, Runge VM, Kirchin MA et al (2009) Diffusion-weighted imaging in patients with acute brain ischemia at 3 T: current possibilities and future perspectives comparing conventional echoplanar diffusion-weighted imaging and fast spin echo diffusion-weighted imaging sequences using BLADE (PROPELLER). Invest Radiol 44:351–359

    Article  PubMed  Google Scholar 

  19. Vertinsky A, Rubesova E, Krasnokutsky M et al (2008) PROPELLER FSE T2-weighted imaging in pediatric brain imaging: can we replace standard FSE T2-weighted imaging? Proc Intl Soc Magn Reson Med 2008:2056

    Google Scholar 

  20. Alibek S, Adamietz B, Cavallaro A et al (2008) Contrast-enhanced T1-weighted fluid-attenuated inversion-recovery BLADE magnetic resonance imaging of the brain: an alternative to spin-echo technique for detection of brain lesions in the unsedated pediatric patient? Acad Radiol 15:986–995

    Article  PubMed  Google Scholar 

  21. Forbes KP, Pipe JG, Karis JP et al (2002) Improved image quality and detection of acute cerebral infarction with PROPELLER diffusion-weighted MR imaging. Radiology 225:551–555

    Article  PubMed  Google Scholar 

  22. Narayanan D, Madsen KS, Kalinyak JE et al (2011) Interpretation of positron emission mammography and MRI by experienced breast imaging radiologists: performance and observer reproducibility. AJR Am J Roentgenol 196:971–981

    Article  PubMed Central  PubMed  Google Scholar 

  23. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  24. Yang RK, Roth CG, Ward RJ et al (2010) Optimizing abdominal MR imaging: approaches to common problems. Radiographics 30:185–199

    Article  PubMed  Google Scholar 

  25. Darge K, Anupindi SA, Jaramillo D (2011) MR imaging of the abdomen and pelvis in infants, children, and adolescents. Radiology 261:12–29

    Article  PubMed  Google Scholar 

  26. Bayramoglu S, Kilickesmez Ö, Cimilli T et al (2010) T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T2-weighted sequences including PROPELLER (BLADE) technique. Acad Radiol 17:368–374

    Article  PubMed  Google Scholar 

  27. Haneder S, Dinter D, Gutfleisch A et al (2011) Image quality of T2W-TSE of the abdomen and pelvis with Cartesian or BLADE-type k-space sampling: a retrospective interindividual comparison study. Eur J Radiol 79:177–182

    Article  CAS  PubMed  Google Scholar 

  28. Rafat Zand K, Reinhold C, Haider MA et al (2007) Artifacts and pitfalls in MR imaging of the pelvis. J Magn Reson Imaging 26:480–497

    Article  Google Scholar 

  29. Li BK, D’Arcy M, Weber E et al (2008) A new method in accelerating PROPELLER MRI. Conf Prox IEEE Eng Med Biol Soc 2008:1655–1658

    Google Scholar 

Download references

Acknowledgments

We thank Allison Alley for language consultation and editing.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hun Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Choi, Y.H., Cheon, J.E. et al. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique. Pediatr Radiol 45, 840–846 (2015). https://doi.org/10.1007/s00247-014-3244-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3244-1

Keywords

Navigation