Skip to main content
Log in

Key Role of Pacing Site as Determinant Factor of Exercise Testing Performance in Pediatric Patients with Chronic Ventricular Pacing

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Chronic right ventricular (RV) apical pacing has been associated with deterioration of functional capacity and chronotropic incompetence during exercise testing in children. The effects of alternative pacing site on exercise performance in pediatric population remain unknown. We evaluated the influence of ventricular pacing site on exercise capacity in pediatric patients with complete congenital atrioventricular block requiring permanent pacemaker therapy. Sixty-four children paced from RV apex (n = 26), RV midseptum (n = 15) and left ventricular (LV) apex (n = 23) were studied cross-sectionally. Treadmill exercise stress testing was performed according to modified Bruce protocol. LV apical pacing was associated with greater exercise capacity. In comparison with the other study groups, children with RV apical pacing showed significantly lower VO2peak (37 ± 4.11; p = 0.003), O2 pulse (8.78 ± 1.15; p = 0.006), metabolic equivalents (7 ± 0.15; p = 0.001) and exercise time (6 ± 3.28; p = 0.03). Worse values in terms of maximum heart rate (139 ± 8.83 bpm; p = 0.008) and chronotropic index (0.6 ± 0.08; p = 0.002) were detected in the RV apical pacing group although maximal effort (respiratory exchange ratio) did not differ among groups (p = 0.216). Pacing from RV apex (odds ratio 9.4; confidence interval 2.5–18.32; Wald 4.91; p = 0.0036) and low peak heart rate achieved (odds ratio 3.66; confidence interval 0.19–7.4; Wald 4.083; p = 0.015) predicted significantly decrease in exercise capacity. Duration of pacing, gender, VVIR mode, baseline heart rate and QRS duration had not significant impact on exercise capacity. The site of ventricular pacing has the major impact on exercise capacity in children requiring permanent pacing. Among the sites assessed, LV apex is related to the better exercise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moak JP, Barron KS, Hougen TJ et al (2001) Congenital heart block: development of late-onset cardiomyopathy, a previously underappreciated sequela. J Am Coll Cardiol 37:238–242

    Article  CAS  PubMed  Google Scholar 

  2. Janousek J, van Geldorp IE, Kuprikova S et al (2013) Permanent cardiac pacing in children: choosing the optimal pacing site: a multicenter study. Circulation 127:613–623

    Article  PubMed  Google Scholar 

  3. Gebauer RA, Tomek V, Salameh A et al (2009) Predictors of left ventricular remodeling and failure in right ventricular pacing in the young. Eur Heart J 30:1097–1104

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cabrera Ortega M, Gonzales Morejón AE, Serrano Ricardo G (2013) Left ventricular synchrony and function in pediatric patients with definitive pacemaker. Arq Bras Cardiol 101:410–417

    PubMed  Google Scholar 

  5. Kim JJ, Friedman RA, Eidem BW et al (2007) Ventricular function and long-term pacing in children with congenital complete atrioventricular block. J Cardiovasc Electrophysiol 18:373–377

    Article  PubMed  Google Scholar 

  6. Vatasescu R, Shalganov T, Paprika D et al (2007) Evolution of left ventricular function in pediatric patients with permanent right ventricular pacing for isolated congenital heart block: a medium term follow-up. Europace 9:228–232

    Article  PubMed  Google Scholar 

  7. Motonaga KS, Punn R, Axelrod DM, Ceresnak SR, Hanisch D, Kazmucha JA, Dubin AM (2015) Diminished exercise capacity and chronotropic incompetence in pediatric patients with congenital complete heart block and chronic right ventricular pacing. Heart Rhythm 12:560–565

    Article  PubMed  Google Scholar 

  8. Lai WW, Geva T, Shirali GS et al (2006) Task Force of the Pediatric Council of the American Society of Echocardiography; Pediatric Council of the American Society of Echocardiography. Guidelines and standards for performance of pediatric echocardiogram: a report from the task force of the pediatric council of the American Society of Echocardiography. J Am Soc Echocardiogr 19:1413–1430

    Article  PubMed  Google Scholar 

  9. Lopez L, Colan SD, Frommelt PC et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23:465–495

    Article  PubMed  Google Scholar 

  10. Yu CM, Fung WH, Lin H, Zhang Q, Sanderson JE, Lau CP (2003) Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol 91:684–688

    Article  PubMed  Google Scholar 

  11. Yu CM, Gorcsan J, Bleeker GB et al (2007) Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Am J Cardiol 100:1263–1270

    Article  PubMed  Google Scholar 

  12. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for health care professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  13. Gasparini G, Curnis A, Gulizia M et al (2005) Rate-responsive pacing regulated by cardiac haemodynamics. Europace 7:234–241

    Article  PubMed  Google Scholar 

  14. Bruce RA, McDonough JR (1969) Stress testing in screening for cardiovascular disease. Bull N Y Acad Med 45:1288–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cumming GR, Everatt D, Hastman L (1978) Bruce treadmill test in children: normal values in a clinic population. Am J Cardiol 41:69–75

    Article  CAS  PubMed  Google Scholar 

  16. Takken T, Blank AC, Hulzebos EH, van Brussel M, Groen WG, Helders PJ (2009) Cardiopulmonary exercise testing in congenital heart disease: (contra) indication and interpretation. Neth Heart J 17:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oliveira RB, Myers J, de Araújo CGS (2011) Long-term stability of the oxygen pulse curve during maximal exercise. Clinics 66:203–209

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elhendy A, Mahoney DW, Khandheria BK, Burger K, Pellikka PA (2003) Prognostic significance of impairment of heart rate response to exercise: impact of left ventricular function and myocardial ischemia. J Am Coll Cardiol 42:823–830

    Article  PubMed  Google Scholar 

  19. Wilkoff BL, Miller RE (1992) Exercise testing for chronotropic assessment. Cardiol Clin 10:705–717

    CAS  PubMed  Google Scholar 

  20. Washington RL, Bricker JT, Alpert BS et al (1994) Guidelines for exercise testing in the pediatric age group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation 90:2166–2179

    Article  CAS  PubMed  Google Scholar 

  21. Mills RW, Cornelusen RN, Mulligan LJ et al (2009) Left ventricular septal and left ventricular apical pacing chronically maintain cardiac contractile coordination, pump function and efficiency. Circ Arrhythm Electrophysiol 2:571–579

    Article  PubMed  Google Scholar 

  22. Blank AC, Hakim S, Strengers JL, Tanke RB, van Veen TA, Vos MA, Takken T (2012) Exercise capacity in children with isolated congenital complete atrioventricular block: does pacing make a difference? Pediatr Cardiol 33:576–585

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thambo JB, Bordachar P, Garrigue S et al (2004) Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 110:3766–3772

    Article  PubMed  Google Scholar 

  24. Chaitman BR (2008) Exercise stress testing. In: Braunwald E, Libby P, Bonow RO, Mann DL, Zipes DP (eds) Braunwald’s heart disease: a textbook of cardiovascular medicine, 8th edn. Saunders Elsevier, Philadelphia, pp 95–226

    Google Scholar 

  25. Bansal M, Fiutem JJ, Hill JA, O’Riordan MA, Zahka KG (2012) Oxygen pulse kinetics in Fontan patients during treadmill ramp protocol cardiopulmonary exercise testing. Pediatr Cardiol 33:1301–1306

    Article  PubMed  Google Scholar 

  26. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ (1991) Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol 17:1065–1072

    Article  CAS  PubMed  Google Scholar 

  27. Menon ASE, Gow RM, Hamilton RM (1982) Chronotropic competence of the sinus node in congenital complete heart block. Am J Cardiol 1982:1119–1123

    Google Scholar 

  28. Ho SY, Esscher E, Anderson RH, Michaelsson M (1986) Anatomy of congenital complete heart block and relation to maternal anti-Ro antibodies. Am J Cardiol 58:291–294

    Article  CAS  PubMed  Google Scholar 

  29. Brucato A, Cimaz R, Catelli L, Meroni P (2000) Anti-Ro-associated sinus bradycardia in newborns. Circulation 102:88–89

    Article  Google Scholar 

  30. Beaufort-Krol GCM, Stienstra Y, Bink-Boelkens MTE (2007) Sinus node function in children with congenital complete atrioventricular block. Europace 9:844–847

    Article  PubMed  Google Scholar 

  31. Vanagt WY, Prinzen FW, Delhaas T (2007) Reversal of pacing induced heart failure by left ventricular apical pacing. N Engl J Med 357:2637–2638

    Article  CAS  PubMed  Google Scholar 

  32. Tomaske M, Breithardt OA, Balmer C, Bauersfeld U (2009) Successful cardiac resynchronization with single-site left ventricular pacing in children. Int J Cardiol 136:136–143

    Article  PubMed  Google Scholar 

  33. Schlosshan D, Baker D, Pepper C, Williams G, Morley C, Tyan LB (2006) CRT improves the exercise capacity and functional reserve of the failing heart trough enhancing the cardiac flow- and pressure-generating capacity. Eur Heart 5:515–521

    Google Scholar 

  34. Vogt P, Goy JJ, Kuhn M, Leuenberger P, Kappenberger L (1988) Single versus double chamber rate responsive cardiac pacing: comparison by cardiopulmonary noninvasive exercise testing. Pacing Clin Electrophysiol 11:1896–1901

    Article  CAS  PubMed  Google Scholar 

  35. Buckingham TA, Janosik DL, Pearson AC (1992) Pacemaker hemodynamics: clinical implications. Prog Cardiovasc Dis 34:347–366

    Article  CAS  PubMed  Google Scholar 

  36. Horenstein MS, Karpawich PP, Tantengco MVT (2003) Single versus dual chamber pacing in the young: noninvasive comparative evaluation of cardiac function. Pacing Clin Electrophisiol 26:1208–1211

    Article  Google Scholar 

Download references

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cabrera Ortega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera Ortega, M., Duamy, H.T. & Benítez Ramos, D.B. Key Role of Pacing Site as Determinant Factor of Exercise Testing Performance in Pediatric Patients with Chronic Ventricular Pacing. Pediatr Cardiol 38, 368–374 (2017). https://doi.org/10.1007/s00246-016-1523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-016-1523-3

Keywords

Navigation