Skip to main content
Log in

Cardiac Contractility Modulation in a Model of Repaired Tetralogy of Fallot: A Sheep Model

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The onset of right ventricular dysfunction in patients presenting with congenital heart disease is associated with a dismal long-term outcome and often represents a therapeutic dead end. Our study had several objectives: (1) to analyse the anatomical, functional, histological and cellular characteristics of an animal model of repaired tetralogy of Fallot with right ventricular dysfunction (2) to test the new electrical treatment known as cardiac contractility modulation in this animal model. Seven sheep underwent a first surgery at the age of three weeks aiming to mimic the characteristics of a repaired tetralogy of Fallot. Five controls were sham-operated. Experimental studies were performed 12 months after the initial operation. The hemodynamic, echocardiographic, and mitochondrial function studies were carried out before and after cardiac contractility modulation in closed- and open-chest conditions. In this animal model of right ventricular dysfunction, short-term cardiac contractility modulation was associated with a significant improvement in (a) right ventricular function, as evidenced by a significant increase in right ventricular dP/dt (p < 0.05) (b) left ventricular function evidenced by the increase in left ventricular dP/dt max (p < 0.05) (c) in mitochondrial function (p < 0.05). In this animal model of chronic right ventricular dysfunction, cardiac contractility modulation significantly improved acute cardiac hemodynamic and mitochondrial functions of both ventricles and may represent a promising option in patients with right heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham WT, Nademanee K, Volosin K et al (2011) Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J Card Fail 17:710–717. doi:10.1016/j.cardfail.2011.05.006

    Article  PubMed  Google Scholar 

  2. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF (2009) The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135:794–804. doi:10.1378/chest.08-0492

    Article  CAS  PubMed  Google Scholar 

  3. Borggrefe MM, Lawo T, Butter C et al (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29:1019–1028. doi:10.1093/eurheartj/ehn020

    Article  PubMed  Google Scholar 

  4. Borutaite V, Morkuniene R, Budriunaite A et al (1996) Kinetic analysis of changes in activity of heart mitochondrial oxidative phosphorylation system induced by ischemia. J Mol Cell Cardiol 28:2195–2201. doi:10.1006/jmcc.1996.0211

    Article  CAS  PubMed  Google Scholar 

  5. Burkhoff D, Ben-Haim SA (2005) Nonexcitatory electrical signals for enhancing ventricular contractility: rationale and initial investigations of an experimental treatment for heart failure. Am J Physiol Heart Circ Physiol 288:H2550–H2556. doi:10.1152/ajpheart.01311.2004

    Article  CAS  PubMed  Google Scholar 

  6. Butter C, Wellnhofer E, Schlegl M et al (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13:137–142. doi:10.1016/j.cardfail.2006.11.004

    Article  PubMed  Google Scholar 

  7. Butter C, Meyhöfer J, Seifert M et al (2007) First use of cardiac contractility modulation (CCM) in a patient failing CRT therapy: clinical and technical aspects of combined therapies. Eur J Heart Fail 9:955–958. doi:10.1016/j.ejheart.2007.05.012

    Article  PubMed  Google Scholar 

  8. Butter C, Rastogi S, Minden H-H et al (2008) Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol 51:1784–1789. doi:10.1016/j.jacc.2008.01.036

    Article  CAS  PubMed  Google Scholar 

  9. Davlouros PA, Niwa K, Webb G, Gatzoulis MA (2006) The right ventricle in congenital heart disease. Heart 92(Suppl 1):i27–i38. doi:10.1136/hrt.2005.077438

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ghio S, Gavazzi A, Campana C et al (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37:183–188

    Article  CAS  PubMed  Google Scholar 

  11. Gupta RC, Mishra S, Wang M et al (2009) Cardiac contractility modulation electrical signals normalize activity, expression, and phosphorylation of the Na+–Ca2+ exchanger in heart failure. J Card Fail 15:48–56. doi:10.1016/j.cardfail.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  12. Gupta RC, Mishra S, Rastogi S et al (2009) Ca(2 +)-binding proteins in dogs with heart failure: effects of cardiac contractility modulation electrical signals. Clin Transl Sci 2:211–215. doi:10.1111/j.1752-8062.2009.00097.x

    Article  CAS  PubMed  Google Scholar 

  13. Imai M, Rastogi S, Gupta RC et al (2007) Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol 49:2120–2128. doi:10.1016/j.jacc.2006.10.082

    Article  PubMed  Google Scholar 

  14. Juillière Y, Barbier G, Feldmann L et al (1997) Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur Heart J 18:276–280

    Article  PubMed  Google Scholar 

  15. Kadish A, Nademanee K, Volosin K et al (2011) A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J 161(329–337):e1–e2. doi:10.1016/j.ahj.2010.10.025

    PubMed  Google Scholar 

  16. Kay L, Rossi A, Saks V (1997) Detection of early ischemic damage by analysis of mitochondrial function in skinned fibers. Mol Cell Biochem 174:79–85

    Article  CAS  PubMed  Google Scholar 

  17. Kunz WS, Kuznetsov AV, Gellerich FN (1993) Mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers is stimulated by caffeine. FEBS Lett 323:188–190

    Article  CAS  PubMed  Google Scholar 

  18. La Vecchia L, Zanolla L, Varotto L et al (2001) Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am Heart J 142:181–189. doi:10.1067/mhj.2001.116071

    Article  PubMed  Google Scholar 

  19. Lawo T, Borggrefe M, Butter C et al (2005) Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. J Am Coll Cardiol 46:2229–2236. doi:10.1016/j.jacc.2005.05.093

    Article  PubMed  Google Scholar 

  20. Neelagaru SB, Sanchez JE, Lau SK et al (2006) Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. Heart Rhythm 3:1140–1147. doi:10.1016/j.hrthm.2006.06.031

    Article  PubMed  Google Scholar 

  21. Pappone C, Augello G, Rosanio S et al (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15:418–427. doi:10.1046/j.1540-8167.2004.03580.x

    Article  PubMed  Google Scholar 

  22. Saks VA, Vasil’eva E, Belikova YuO et al (1993) Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. Biochim Biophys Acta 1144:134–148

    Article  CAS  PubMed  Google Scholar 

  23. Sun JP, James KB, Yang XS et al (1997) Comparison of mortality rates and progression of left ventricular dysfunction in patients with idiopathic dilated cardiomyopathy and dilated versus nondilated right ventricular cavities. Am J Cardiol 80:1583–1587

    Article  CAS  PubMed  Google Scholar 

  24. Thambo J-B, Roubertie F, De Guillebon M et al (2012) Validation of an animal model of right ventricular dysfunction and right bundle branch block to create close physiology to postoperative tetralogy of Fallot. Int J Cardiol 154:38–42. doi:10.1016/j.ijcard.2010.08.063

    Article  PubMed  Google Scholar 

  25. Veksler VI, Kuznetsov AV, Sharov VG et al (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892:191–196

    Article  CAS  PubMed  Google Scholar 

  26. Yu C-M, Chan JY-S, Zhang Q et al (2009) Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging 2:1341–1349. doi:10.1016/j.jcmg.2009.07.011

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the French Government, Agence Nationale de la Recherche au titre du programme Investissements d’Avenir (Grant No. ANR-10-IAHU-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bordachar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roubertie, F., Eschalier, R., Zemmoura, A. et al. Cardiac Contractility Modulation in a Model of Repaired Tetralogy of Fallot: A Sheep Model. Pediatr Cardiol 37, 826–833 (2016). https://doi.org/10.1007/s00246-016-1356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-016-1356-0

Keywords

Navigation