Skip to main content

Advertisement

Log in

Numerical simulation of melting ice around a floating by microwaves

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper a new method in using microwaves is provided for melting the ice around a floating equipment in a freezing condition in cold regions. The numerical simulation’s results for validation are compared with the simple model’s experimental data. Using microwave in melting the ice around a floating equipment is caused by lack of the mechanical wear, low energy dissipation factor and acceptable defrosting process speed in small lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Millerd F (2011) The potential impact of climate change on Great Lakes international shipping. Clim Change J 104(3–4):629–652

    Article  Google Scholar 

  2. Kalisch J, Macke A (2012) Radiative budget and cloud radiative effect over the Atlantic from ship based observations. Atm Meas Tech Discuss 5(2):2011–2042

    Article  Google Scholar 

  3. Walker JM, Penney PW (2012) Arctic sea-ice and maritime transport technology. Weather 28(9):358–371

    Article  Google Scholar 

  4. US Army Corps of Engineers (2010) Supplemental reconnaissance report-Great lakes system navigation review. http://www.lre.usace.army.mil/Portals/69/docs/PPPM/PlanningandStudies/glnssuppreport/GLNSSuppReconMain2.pdf

  5. Lembke-Jene L, Biebow N, Wolff-Boenisch B, Thiede J (2011) Breaking the ice: strategies for future European research in the polar oceans—the AURORA BOREALIS concept. AGU Fall Meeting, San Francisco, CA, USA, 5–9 Dec 2011

  6. Lensu M, Haapala J, Heiler I, Karvonen J, Suominen M (2011) Multiscale observation system for sea ice drift and deformation. AGU Fall Meeting, San Francisco, CA, USA, 5–9 Dec 2011

  7. Kondo K, Takamasa T (1999) The economic potential of a cassette-type-reactor-installed nuclear ice-breaking container ship. J Nucl Sci Technol 36(12):1199–1208

    Article  Google Scholar 

  8. Craig S, McKenna R (2012) Preparing for US polar icebreaker recapitalization. Naval Eng J 124(2):139–145

    Google Scholar 

  9. Carlton JS, Smart R, Jenkins V (2011) The nuclear propulsion of merchant ships: aspects of engineering, science and technology. J Mar Eng Technol 10(2):47–59

    Google Scholar 

  10. Metaxas AC, Meredith RJ (1983) Industrial microwave heating. Iee power engineering series, Illustrated Edition. IET, no. 4, pp 149–156

  11. Tanaka M, Sato M (2007) Microwave heating of water, ice and saline solution: molecular dynamics study. J Chem Phys 126:034509. doi:10.1063/1.2403870

    Article  Google Scholar 

  12. Stadler A, Kappe CO (2000) Microwave-mediated Biginelli reactions revisited. On the nature of rate and yield enhancements. J Chem Soc Perkin Trans 2:1363–1368

    Article  Google Scholar 

  13. Horais G, Pichler S, Stadler A, Gossler W, Kappe CO (2001) Microwave-Assisted Organic Synthesis - Back to the Roots. In: 5th international electronic conference on synthetic organic chemistry (ECSOC-5). http://www.mdpi.net/ecsoc/ecsoc-5/Papers/e0000/e0000.htm

  14. Caliendo G, Fiorino F, Perissutti E, Severino B, Gessi S, Cattabriga E, Borea PA, Santagada V (2001) Synthesis by microwave irradiation and binding properties of novel 5-HT(1A) receptor ligands. Eur J Med Chem 36(11–12):873–886

    Article  Google Scholar 

  15. Motohiko T, Sato M (2006) Microwave heating of water, ice and saline solution: molecular dynamics study. arXiv preprint cond-mat/0607766

  16. Peng Z, Hwang JY, Andriese M, Bell W, Huang X, Wang X (2011) Numerical simulation of heat transfer during microwave heating of magnetite. ISIJ International 51(6):884–888

    Article  Google Scholar 

  17. Kashimura K, Sato M, Hotta M, Agrawal DK, Nagata K, Hayashi M, T Mitani, N Shinohara (2012) Iron production from Fe3O4 and graphite by applying 915 MHz microwaves. Mater Sci Eng

  18. Seiya I, Hongyu H, Fujio W, Haoran Y, Masanobu H, Noriyuki K (2012) Heat transfer during microwave-assisted desorption of water vapor from zeolite packed bed. Dry Technol Int J 30(15):1707–1713

    Article  Google Scholar 

  19. Askari GR, Emam-Djomeh Z, Mousavi SM (2013) Heat and mass transfer in apple cubes in a microwave-assisted fluidized bed drier. Food Bioprod Process 91:207–215

    Article  Google Scholar 

  20. Zhou X, Chan SW, Tseng HL, Deng Y, Hoi PM, Choi PS, Penelope MY (2012) Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions. Phytomedicine

  21. N. J. English Mol. Phys. (2006), 103, 1945 (2005); ibid, 104, 243

  22. Shao P, He J, Sun P, Zhao P (2012) Analysis of conditions for microwave-assisted extraction of total water-soluble flavonoids from Perilla Frutescens leaves. J Food Sci Technol 49(1):66–73

    Article  Google Scholar 

  23. Zhang Q, Jackson TH, Ungan A (2000) Numerical modeling of microwave induced natural convection. Int J Heat Mass Transf 43(12):2141–2154

    Article  MATH  Google Scholar 

  24. Ratanadecho P, Aoki K, Akahori M (2001) Experimental and numerical study of microwave drying in unsaturated porous material. Int Commun Heat Mass Transf 28:605–616

    Article  Google Scholar 

  25. Von Hippel AR (ed) (1954) Dielectric materials and applications. M.I.T. Press, Cambridge

    Google Scholar 

  26. Weast RC (ed) (1980) CRC handbook of chemistry and physics, 60th edn. CRC Press, Boca Raton

    Google Scholar 

  27. US Coast Guard (1999) Chemical hazards response information system (CHRIS). http://www.uscg.mil/hq/nsfweb/foscr/ASTFOSCRSeminar/References/CHRISManualIntro.pdf

  28. Holman JP (1976) Heat transfer, 4th edn. McGraw-Hill, New York

    Google Scholar 

  29. Kreith F (1973) Principles of heat transfer, 3rd edn. Intext Educ Publ, New York

    Google Scholar 

  30. Forsythe GE, Wasow WR (1960) Finite difference methods for partial differential equations. Wiley, New York

    MATH  Google Scholar 

  31. Smith GD (1978) Numerical solution of partial differential equations. Finite difference methods, 2nd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  32. Anderson DA, Tennehill JC, Pletcher RH (1984) Computational fluid mechanics and heat transfer. Hemisphere Publishing, New York

    MATH  Google Scholar 

  33. Watters DG, Brodwin ME, Kriegsman GA (1988) Dynamic temperature profiles for a uniformly illuminated planar surface. Mater Res Soc Symp Proc 124:129–134

    Article  Google Scholar 

  34. Murray WD, Landis F (1959) Numerical and machine solutions of transient heat conduction problem involving melting or freezing. ASME J Heat Transf 81:106–112

    Google Scholar 

  35. Wang Shimin, Faghri Amir, Bergman Theodore L (2012) Melting in cylindrical enclosures: numerical modeling and heat transfer correlations. Numer Heat Transf Part A Appl 61(11):837–859

    Google Scholar 

  36. Ratanadecho P (2004) Theoretical and experimental investigation of microwave thawing of frozen layer using a microwave oven (effects of layered configurations and layer thickness). Int J Heat Mass Transf 47(5):937–945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Lakzian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakzian, E., Parsian, A. & Lakzian, K. Numerical simulation of melting ice around a floating by microwaves. Heat Mass Transfer 52, 429–436 (2016). https://doi.org/10.1007/s00231-015-1567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1567-6

Keywords

Navigation