Skip to main content
Log in

Heat and mass transfer studies in a batch fluidized bed dryer using Geldart group D particles

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The drying behavior at low temperatures has been studied with four different uniformly sized particles and three different binary mixtures at different dilutions ranging from 10 to 40 % with an interval of 10 % varying parameters such as air velocity, initial moisture content, initial bed height and temperature. Falling rate period one and two were observed and correlations were developed to predict the drying rate in falling rate periods one and two. Correlations were also developed to predict the average moisture content by considering the effect of various parameters for uniformly sized particles and binary mixture of solids. The heat and mass transfer coefficients have been found for different conditions and compared. Comparison of experimental and predicted average moisture contents for uniformly sized particles and for various binary mixtures has been made and the predicted average moisture content has been found to be in good agreement with experimental average moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

C in , C 0 :

Initial moisture content of solids (kg water/kg dry sand)

C t :

Moisture content with respect to time (kg water/kg dry sand)

C*:

Moisture content at the end of falling rate period one (kg water/kg dry sand)

C eq :

Equilibrium moisture content (kg water/kg dry sand)

\(\overline{C}\) :

Average moisture content (kg water/kg dry sand)

\(\overline{C}_{U}\) :

Average moisture content of uniform particle sizes (kg water/kg dry sand)

\(\overline{C}_{BM}\) :

Average moisture content of binary mixtures (kg water/kg dry sand)

d p :

Diameter of the particle (m)

\(\overline{{d_{p} }}\) :

Average diameter of particles (m)

D v :

Diffusivity (m2/s)

H :

Initial static bed height (cm)

h :

Heat transfer coefficient (W/m2 K)

k g,bed :

Mass transfer coefficient (1/s)

K :

Thermal conductivity (W/m K)

M :

Molecular weight

Nu p :

Nusselt number of particles, \(Nu\, = \frac{{hd_{p} }}{{K_{g} }}\)

Pr g :

Prandtl number of gas, \(\Pr \, = \,\frac{{C_{p} \mu }}{{K_{g} }}\)

R :

Drying rate (kg water/kg dry sand s)

R 1 :

Drying rate in falling rate period one (kg water/kg dry sand s)

R 2 :

Drying rate in falling rate period two (kg water/kg dry sand s)

\(\text{Re}_{p}\) :

Reynolds number of particles, \(\text{Re}_{p} \, = \,\frac{{\rho_{g} u_{0} d_{p} }}{{\mu_{g} }}\)

Sh bed :

Sherwood number of bed, \(Sh\, = \frac{{k_{g} d_{p} }}{{D_{v} }}\)

Sc :

Schmidt number, \(Sc\, = \,\frac{{\mu_{g} }}{{\rho_{g} D_{v} }}\)

t :

Time (s)

T :

Temperature (°C)

u, u 0 :

Air velocity (m/s)

V :

Critical molar volume (m3/g mol)

W :

Weight of solids (kg)

X :

Weight fraction

y :

Mole fraction

δ :

Bubble fraction in bed

ρ :

Density (kg/m3)

μ :

Viscosity of gas (kg/m s)

ε :

Voidage

ϕ :

Sphericity

g :

Air

p :

Particles

s :

Solids

mf :

Minimum fluidization

f :

Fluidization

A:

Air

W:

Water

CA:

Critical air

CW:

Critical water

References

  1. Prachayawarakorn S, Prachayawasin P, Soponronnarit S (2006) Heating process of soybean using hot-air and superheated-steam fluidized-bed dryers. LWT-Food Sci Tech. doi:10.1016/j.lwt.2005.05.013

    Google Scholar 

  2. Srinivasa Kannan C, Thomas PP, Varma YBG (1995) Drying of solids in fluidized beds. Ind Eng Chem Res. doi:10.1021/ie00048a018

    Google Scholar 

  3. Hashemi G, Mowla D, Kazemeini M (2009) Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. J Food Eng. doi:10.1016/j.jfoodeng.2008.12.004

    Google Scholar 

  4. Geldart D (1973) Types of gas fluidization. Powder Technol 7:285–292

    Article  Google Scholar 

  5. Mujumdar AS (2006) Handbook of industrial drying, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Satish S, Pydi Setty Y (2005) Modeling of a continuous fluidized bed dryer using artificial neural networks. Int Commun Heat Mass Transf. doi:10.1016/j.icheatmasstransfer.2004.06.005

    Google Scholar 

  7. Sahoo A, Roy GK (2005) Mixing characteristic of homogeneous binary mixture of regular particles in gas–solid fluidized bed. Powder Technol. doi:10.1016/j.powtec.2005.08.010

    Google Scholar 

  8. Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  9. Yang Wen-Ching (2003) Handbook of fluidization and fluid-particle systems. Marcel Dekker, New York

    Book  Google Scholar 

  10. Fan Liang-Shih, Zhu Chao (1998) Principles of gas–solid flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  11. Wang HG, Dyakowski T, Senior P, RS Raghavan, Yanga WQ (2007) Modelling of batch fluidised bed drying of pharmaceutical granules. Chem Eng Sci. doi:10.1016/j.ces.2006.11.047

    Google Scholar 

  12. Broadhurst TE, Becker HA (1975) Onset of fluidization and slugging in beds of uniform particles. AIChE J. doi:10.1002/aic.690210204

    Google Scholar 

  13. Zarghami R, Mostoufi N, Sotudeh-Gharebagh R (2005) Particle-wall contact time in fluidized beds. In: 3rd IASME/WSEAS international conference on heat transfer, thermal engineering and environment. Corfu, Greece, August 20–22, pp 85–90

  14. Cui H, Mostoufi N, Chaouki J (2000) Characterization of dynamic gas–solid distribution in fluidized beds. Chem Eng J. doi:10.1016/S1385-8947(00)00178-9

    Google Scholar 

  15. McCabe WL, Smith JC, Harriott P (1993) Unit operations of chemical engineering, 5th edn. McGraw-Hill, Inc., Singapore

    Google Scholar 

  16. Gunn DJ (1978) Transfer of heat or mass to particle in fixed and fluidized beds. Int J Heat Mass Transf. doi:10.1016/0017-9310(78)90080-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Pydi Setty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, G., Pydi Setty, Y. Heat and mass transfer studies in a batch fluidized bed dryer using Geldart group D particles. Heat Mass Transfer 50, 1535–1542 (2014). https://doi.org/10.1007/s00231-014-1364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1364-7

Keywords

Navigation