Skip to main content
Log in

Economic and technical assessment of the desiccant wheel effect on the thermal performance of cross flow cooling towers in variable wet bulb temperature

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Performance improvements of cross flow cooling towers in variable wet bulb temperature were performed. A conventional mathematical model is used to predict desiccant wheel effect on the performance of cooling tower. It is found that by using optimum parameters of desiccant wheel, the inlet air wet bulb temperature into the cooling tower would decrease more than 6 °C and outlet water temperature would decrease more than 4 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Merkel F (1925) Evaporative cooling. Z Verein Deutsch Ingen (VDI) 70:123–128

    Google Scholar 

  2. Halasz B (1998) A general mathematical model of evaporative cooling devices. In J Therm Sci 37:245–255

    Google Scholar 

  3. Halasz B (1999) Application of a general non-dimensional mathematical model to cooling towers. Int J Therm Sci 38:75–88

    Article  Google Scholar 

  4. Kairouani L, Hassairi M, Tarek Z (2003) Performance of cooling tower in south of Tunisia. Build Environ 39:351–355

    Article  Google Scholar 

  5. Prasad M (2003) Economic up gradation and optimal use of multi-cell cross flow evaporative water cooling tower through modular performance appraisal. Appl Therm Eng 24:579–593

    Article  Google Scholar 

  6. Kloppers JC, Kroger DG (2005) Cooling tower performance evaluation: Merkel, Poppe, and e-NTU methods of analysis. J Eng Gas Turbines Power 127:1–7

    Article  Google Scholar 

  7. Poppe M and Rdgener H (1991) Berechnung von Rilckkiihlwerken. VDl-Wiirmeatlas, pp Mi I–Mi I5

  8. Khan JR, Zubair SM (2001) An improved design and rating analyses of counter flow wet cooling towers. ASME J Heat Transf 123:770–778

    Article  Google Scholar 

  9. Khan JR, Zubair SM (2002) Performance characteristics of counter flow wet cooling towers. Energy Convers Manag 44:2073–2091

    Article  Google Scholar 

  10. Hajidavalloo E, Shakeri R, Mehrabian MA (2010) Thermal performance of cross flow cooling towers in variable wet bulb temperature. Energy Convers Manag 51:1298–1303

    Article  Google Scholar 

  11. Wurm J, Kosar D, Clemens T (2002) Solid desiccant technology review. Bull Int Inst Refrig 82:2–31

    Google Scholar 

  12. Lof GOG (1955) Cooling with solar energy. In: Proceeding of congress of solar energy, Tucson, Arison, pp 171–189

  13. Mazzei P, Minichiello F, Palma D (2002) Desiccant HVAC system for commercial buildings. Appl Therm Eng 22:545–560

    Article  Google Scholar 

  14. Ghali K (2008) Energy saving potential of a hybrid desiccant dehumidification air conditioning system in Beirut. Energy Convers Manag 49:3387–3390

    Article  Google Scholar 

  15. Cejudo JM, Moreno R, Carrillo A (2002) Physical and neural network models of a silica-gel desiccant wheel. Energy Build 34:837–844

    Article  Google Scholar 

  16. Henning HM, Erpenbeck T, Hindenberg C, Santamiria IS (2001) The potential of solar energy use in desiccant cooling cycles. Int J Refrig 24:220–229

    Article  Google Scholar 

  17. Zhang LZ, Niu JL (2002) Performance comparisons of desiccant wheel for air dehumidification and enthalpy recovery. Appl Therm Eng 22:1347–1367

    Article  MathSciNet  Google Scholar 

  18. Jalalzadeh-Azar AA, Slayzak S, Judkoff R, Schamuser T, DeBlasio R (2005) Performance assessment of a desiccant cooling system in a CHP application incorporating an IC engine. Int J Distrib Energy Resour 1(2):163–184

    Google Scholar 

  19. Esfandiari Nia F, Passen DV, Saidi MH (2006) Modeling and simulation of desiccant wheel for air conditioning. Int J Energy Build 38:1230–1239

    Article  Google Scholar 

  20. Yadav A, Bajpai VK (2011) Optimization of operating parameters of desiccant wheel for rotation speed. Int J Adv Sci Technol 32:109–116

    Google Scholar 

  21. Sajith A, Dilip D (2009) Experimental analysis of solid desiccant wheel dehumidifier. In: 10th national conferences on technological trends

  22. La D, Dai YJ, Li Y, Wang RZ, Ge TS (2012) A review of technical development of rotary desiccant dehumidification and air conditioning. Renew Sustain Energy Rev 14:130–147

    Article  Google Scholar 

  23. Saidi MH, Aghanajafi C, Mohammadian M (2010) Analysis of dehumidification effects on cooling capacity of an evaporative cooler. J Therm Sci Technol 5(1):151–164

    Article  Google Scholar 

  24. Al-Nimr MA, Abu Nabah BA, Naji M (2002) A novel summer air conditioning system. Int J Energy Convers Manag 43:1911–1921

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Banooni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banooni, S., Chitsazan, A. Economic and technical assessment of the desiccant wheel effect on the thermal performance of cross flow cooling towers in variable wet bulb temperature. Heat Mass Transfer 50, 1587–1596 (2014). https://doi.org/10.1007/s00231-014-1360-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1360-y

Keywords

Navigation