Skip to main content
Log in

An investigation of flow orientation on air–water two-phase flow in circular minichannel

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Experimental investigations to establish the effect of flow orientations on gas–liquid two-phase flow patterns in minichannel is reported. Experimental test setup involves entry of air and water into the main channel through Y-junction inlet. Flow patterns are visualized for horizontal (0°), vertical (90°) upward, downward and angular (±30°, ±45°, ±60°) orientations of the channel. The visualized images are utilized for establishing flow pattern maps for all the orientations. A comparative analysis of flow patterns for all the orientations reveal the influence of gravity in the surface tension dominating regimes of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Bo:

Bond number \( {\text{Bo}} = \left( {\frac{{g\left( {\rho_{L} - \rho_{G} } \right)D_{h}^{2} }}{\sigma }} \right) \)

Ca:

Capillary number \( {\text{Ca}} = \left( {\frac{{\mu \left( {U_{SG} + U_{SL} } \right)}}{\sigma }} \right) \)

Co:

Confinement number \( Co = \frac{1}{{D_{h} }}\sqrt {\frac{\sigma }{{g\left( {\rho_{L} - \rho_{G} } \right)}}} \)

D h :

Channel hydraulic diameter

Eö:

Eötvös number \( E{\ddot{o}} = \frac{{g\left( {\rho_{L} - \rho_{G} } \right)D_{h}^{2} }}{\sigma } \)

g:

Gravitational acceleration

h L :

Equilibrium liquid level

L:

Laplace constant \( L = \sqrt {\frac{\sigma }{{g\left( {\rho_{L} - \rho_{G} } \right)}}} \)

LPM:

Litre per minute

\( {\text{Re}}_{SG/SL} \) :

Superficial Reynolds number \( \text{Re}_{SG/SL} = \frac{{\rho_{G/L} U_{SG/SL} D_{h} }}{\mu } \)

U SG :

Superficial gas velocity

U SL :

Superficial liquid velocity

YJ:

Y-junction inlet

σ :

Surface tension

ρ G :

Gas phase density

ρ L :

Liquid phase density

μ :

Dynamic viscosity

References

  1. Tsoligkas AN, Simmons MJH, Wood J (2007) Influence of orientation upon the hydrodynamics of gas–liquid for square channels in monolith supports. Chem Eng Sci 62:4365–4378

    Article  Google Scholar 

  2. Roy S, Bauer T, Al-Dahhan M, Lehner P, Turek T (2004) Monoliths as multiphase reactors: a review. AIChE J 50(11):2918–2938

    Article  Google Scholar 

  3. Thulasidas TC, Abraham MA, Cerro RL (1997) Flow patterns in liquid slugs during bubble–train flow inside capillaries. Chem Eng Sci 52:2947–2962

    Article  Google Scholar 

  4. Thulasidas TC, Abraham MA, Cerro RL (1999) Dispersion during bubble–train flow in capillaries. Chem Eng Sci 54:61–76

    Article  Google Scholar 

  5. Kreutzer MT, Kapteijn F, Moulijn JA, Heizwolf JJ (2005) Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem Eng Sci 60:5895–5916

    Article  Google Scholar 

  6. Abiev RSh, Lavretsov IV (2012) Intensification of mass transfer from liquid to capillary wall by Taylor vortices in minichannels, bubble velocity and pressure drop. Chem Eng Sci 74:59–68

    Article  Google Scholar 

  7. Kew P, Cornwell K (1997) Correlations for prediction of flow boiling heat transfer in small-diameter channels. Appl Therm Eng 17:705–715

    Article  Google Scholar 

  8. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, Sadowski DL (1999) Gas–liquid two-phase flow in microchannels part I: two-phase flow patterns. Int J Multiph Flow 25:377–394

    Article  MATH  Google Scholar 

  9. Bretherton FP (1961) The motion of long bubbles in tubes. J Fluid Mech 10:167–188

    Article  MathSciNet  Google Scholar 

  10. White E, Beardmore R (1962) The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes. Chem Eng Sci 17:351–361

    Article  Google Scholar 

  11. Mehendale SS, Jacobi AM, Ahah RK (2000) Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl Mech Rev 53:175–193

    Article  Google Scholar 

  12. Kandlikar SG, Grande WJ (2003) Evolution of microchannel flow passages: thermo hydraulic performance and fabrication technology. Heat Transf Eng 24(1):3–17

    Article  Google Scholar 

  13. Chen L, Tian YS, Karayiannis TG (2006) The effect of tube diameter on vertical two-phase regimes in small tubes. Int J Heat Mass Transf 49:4220–4230

    Article  Google Scholar 

  14. Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas liquid flow. AIChE J 22(1):47–55

    Article  Google Scholar 

  15. Taitel Y, Barnea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas–liquid flow in vertical tubes. AIChE J 26:345–354

    Article  Google Scholar 

  16. Barnea D, Luninski Y, Taitel Y (1983) Flow pattern in horizontal and vertical two phase flow in small diameters pipes. Can J Chem Eng 61(5):617–620

    Article  Google Scholar 

  17. Fukano T, Kariyasaki A (1993) Characteristics of gas–liquid two-phase flow in a capillary. Nucl Eng Des 141:59–68

    Article  Google Scholar 

  18. Coleman JW, Garimella S (1999) Characterization of two-phase flow patterns in small diameter round and rectangular tubes. Int J Heat Mass Transf 42:2869–2881

    Article  Google Scholar 

  19. Damianides C, Westwater JW (1988) Two phase flow patterns in a compact heat exchanger and in small tubes. In: Proceedings of second U. K. national conference on heat transfer, vol II, glasgow, September 14–16, 1988, Mechanical Engineering Publications, London, pp 1257–1268

  20. Yang CY, Shieh CC (2001) Flow pattern of air–water and two-phase R-134a in small circular tubes. Int J Multiph Flow 27:1163–1177

    Article  MATH  Google Scholar 

  21. Chen WL, Twu MC, Pan C (2002) Gas–liquid two-phase flow in micro-channels. Int J Multiph Flow 28:1235–1247

    Article  MATH  Google Scholar 

  22. Hassan I, Vaillancourt M, Pehlivan K (2005) Two-phase flow regime transitions in microchannels: a comparative experimental study. Microscale Therm Eng 9:165–182

    Article  Google Scholar 

  23. Lee CY, Lee SY (2008) Influence of surface wettability on transition of two-phase flow pattern in round mini-channels. Int J Multiph Flow 34:706–711

    Article  Google Scholar 

  24. Venkatesan M, Das SK, Balakrishnan AR (2011) Effect of diameter on two-phase pressure drop in narrow tubes. Exp Thermal Fluid Sci 35:531–541

    Article  Google Scholar 

  25. Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transf 27(5):723–737

    Article  Google Scholar 

  26. Galbiati L, Andreini P (1992) Flow pattern transition for vertical downward two phase flow in capillary tubes. Inlet mixing effects. Int Commun Heat Mass Transf 19:791–799

    Article  Google Scholar 

  27. Mishima K, Hibiki T (1996) Some characteristics of air–water two-phase flow in small diameter vertical tubes. Int J Multiph Flow 22:703–712

    Article  MATH  Google Scholar 

  28. Zhao TS, Bi QC (2001) Co-current air–water two-phase flow patterns in vertical triangular microchannels. Int J Multiph Flow 27:765–782

    Article  MATH  Google Scholar 

  29. Hanafizadeh P, Saidi MH, Gheimasi AN, Ghanbarzadeh S (2011) Experimental investigation of air–water two-phase flow regimes in vertical mini pipe. Sci Iran B 18(4):923–929

    Article  Google Scholar 

  30. Biswas J, Greenfield PF (1985) Two-phase flow through vertical capillaries-existence of a stratified flow pattern. Int J Multiph Flow 11(4):553–563

    Article  Google Scholar 

  31. Qian D, Lawal A (2006) Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem Eng Sci 61:7609–7625

    Article  Google Scholar 

  32. Shao N, Gavriilidis A, Angeli P (2011) Effect of inlet conditions on Taylor bubble length in microchannels. Heat Transf Eng 32(13–14):1117–1125

    Article  Google Scholar 

  33. Serizawa A, Feng Z, Kawara Z (2002) Two-phase flow in microchannels. Exp Thermal Fluid Sci 26:703–714

    Article  Google Scholar 

  34. Barnea D, Shoham O, Taitel Y (1982) Flow pattern transition for vertical downward two phase flow. Chem Eng Sci 37(5):741–744

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the authorities of the Sardar Vallabhbhai National Institute of Technology, Surat for providing financial support for the development of Advanced Fluid Dynamics Lab where this minichannel based experiments are conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmay Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, H.B., Banerjee, J. An investigation of flow orientation on air–water two-phase flow in circular minichannel. Heat Mass Transfer 50, 1353–1364 (2014). https://doi.org/10.1007/s00231-014-1332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1332-2

Keywords

Navigation