Skip to main content

Advertisement

Log in

Effect of increasing sea water pCO2 on the northern Atlantic krill species Nyctiphanes couchii

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Surprisingly little is known about potential effects of ocean acidification on krill of the Northern Hemisphere as ecologically very important food web component. Sub-adult individuals of the northern Atlantic krill species Nyctiphanes couchii (caught at Austevoll near Bergen, Norway, in January 2013) were exposed in the laboratory to four different levels of pCO2 (430, 800, 1,100, and 1,700 µatm) for 5 weeks in order to assess potential changes in a set of biological response variables. Survival decreased and the frequency of moulting-related deaths increased with increasing pCO2. Survival was considerably reduced at relatively high pCO2 of 1,700 µatm and tended to be negatively affected at 1,100 µatm pCO2. However, the experimental results show no significant effects of pCO2 on inter-moult period and growth at pCO2 levels below 1,100 µatm. No differences in length measurements of the carapace and uropod were observed across pCO2 levels, indicating no effect of changing carbonate chemistry on the morphology of those calciferous parts of the exoskeleton. The results suggest that sub-adult N. couchii may not suffer dramatically from predicted near-future changes in pCO2. However, potential detrimental effects on the moulting process and associated higher mortality at 1,100 µatm pCO2 cannot be excluded. Further experiments are needed in order to investigate whether early life stages of N. couchii show a different sensitivity to elevated sea water pCO2 and whether those results are transferable to other krill species of the Northern Hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarset AV, Torres JJ (1989) Cold resistance and metabolic responses to salinity variations in the amphipod Eusirus antarcticus and the krill Euphausia superba. Polar Biol 9:491–497. doi:10.1007/BF00261032

    Article  Google Scholar 

  • Andersen S, Grefsrud ES, Harboe T (2013) Effect of increased pCO2 level on early shell development in great scallop (Pecten maximus Lamarck) larvae. Biogeosciences 10:6161–6184. doi:10.5194/bg-10-6161-2013

    Article  CAS  Google Scholar 

  • Atkinson A, Meyer B, Stübing D, Hagen W, Schmidt K, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter: II. Juveniles and adults. Limnol Oceanogr 47:953–966. doi:10.4319/lo.2002.47.4.0953

    Article  Google Scholar 

  • Båmstedt U, Karlson K (1998) Euphausiid predation on copepods in coastal waters of the Northeast Atlantic. Mar Ecol Prog Ser 172:149–168. doi:10.3354/meps172149

    Article  Google Scholar 

  • Bewick V, Cheek L, Ball J (2004) Statistics review 12: survival analysis. Crit Care 8:389–394. doi:10.1186/cc2955

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365. doi:10.1038/425365a

    Article  CAS  Google Scholar 

  • Chan S-M, Rankin SM, Keeley LL (1988) Characterization of the molt stages in Penaeus vannamei: setogenesis and hemolymph levels of total protein, ecdysteroids, and glucose. Biol Bull 175:185. doi:10.2307/1541558

    Article  Google Scholar 

  • Chang ES, Mykles DL (2011) Regulation of crustacean molting: a review and our perspectives. Gen Comp Endocrinol 172:323–330. doi:10.1016/j.ygcen.2011.04.003

    Article  CAS  Google Scholar 

  • Cripps G, Lindeque P, Flynn KJ (2014) Have we been underestimating the effects of ocean acidification in zooplankton? Glob Chang Biol. doi:10.1111/gcb.12582

    Google Scholar 

  • Dalpadado P, Ikeda T (1989) Some observations on moulting, growth and maturation of krill (Thysanoessa inermis) from the Barents Sea. J Plankton Res 11:133–139. doi:10.1093/plankt/11.1.133

    Article  Google Scholar 

  • Dalpadado P, Mowbray F (2013) Comparative analysis of feeding ecology of capelin from two shelf ecosystems, off Newfoundland and in the Barents Sea. Prog Oceanogr 114:97–105. doi:10.1016/j.pocean.2013.05.007

    Article  Google Scholar 

  • Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep Sea Res Part II Top Stud Oceanogr 55:2266–2274. doi:10.1016/j.dsr2.2008.05.016

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap 34:1733–1743. doi:10.1016/0198-0149(87)90021-5

    Article  CAS  Google Scholar 

  • Dickson A, Sabine C, Christian J (eds) (2007) Guide to best practices for ocean CO2 measurements. PICES Spec Publ 3, British Columbia, p 191

    Google Scholar 

  • Dissanayake A, Ishimatsu A (2011) Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J Mar Sci 68:1147–1154. doi:10.1093/icesjms/fsq188

    Article  Google Scholar 

  • Doney S, Balch W, Fabry V, Feely R (2009) Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22:16–25. doi:10.5670/oceanog.2009.93

    Article  Google Scholar 

  • Einarsson H (1945) Euphausiacea I. Northern Atlantic species. Dana-Rep. 27, Carlsberg Foundation, Copenhagen, p 195

  • Findlay H, Kendall M, Spicer J, Widdicombe S (2009) Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar Ecol Prog Ser 389:193–202. doi:10.3354/meps08141

    Article  Google Scholar 

  • Fitzer SC, Caldwell GS, Close AJ, Clare AS, Upstill-Goddard RC, Bentley MG (2012) Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J Exp Mar Bio Ecol 418–419:30–36. doi:10.1016/j.jembe.2012.03.009

    Article  Google Scholar 

  • Flores H, Atkinson A, Kawaguchi S, Krafft BA, Milinevsky G, Nicol S, Reiss C, Tarling GA, Werner R, Bravo Rebolledo E, Cirelli V, Cuzin-Roudy J, Fielding S, Groeneveld JJ, Haraldsson M, Lombana A, Marschoff E, Meyer B, Pakhomov EA, Rombolá E, Schmidt K, Siegel V, Teschke M, Tonkes H, Toullec JY, Trathan PN, Tremblay N, Van de Putte AP, van Franeker JA, Werner T (2012) Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 458:1–19. doi:10.3354/meps09831

    Article  Google Scholar 

  • Forward RB, Fyhn HJ (1983) Osmotic regulation of the krill Meganyctiphanes norvegica. Comp Biochem Physiol Part A Physiol 74:301–305. doi:10.1016/0300-9629(83)90604-7

    Article  Google Scholar 

  • Furuita H, Takeuchi T, Toyota M, Watanabe T (1996) EPA and DHA requirements in early juvenile red sea bream using HUFA enriched Artemia nauplii. Fish Sci 62:246–251. doi:10.2331/fishsci.62.246

    CAS  Google Scholar 

  • Gattuso J-P, Hansson L (2011) Ocean acidification. Oxford University Press, Oxford, pp 326

  • Grasshoff K (1965) On the automatic determination of phosphate, silicate and fluoride in sea water. ICES Hydrogr. Commitee Rep. 129

  • Halsband C, Kurihara H (2013) Potential acidification impacts on zooplankton in CCS leakage scenarios. Mar Pollut Bull 73:495–503. doi:10.1016/j.marpolbul.2013.03.013

    Article  CAS  Google Scholar 

  • Harvey RA, Ferrier DR (2011) Biochemistry, 5th ed. Lippincott Williams and Wilkins, Philadelphia, pp 520

  • IPCC (2007) The physical science basis: contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. pp 996

  • Kaartvedt S, Larsen T, Hjelmseth K, Onsrud M (2002) Is the omnivorous krill Meganyctiphanes norvegica primarily a selectively feeding carnivore? Mar Ecol Prog Ser 228:193–204. doi:10.3354/meps228193

    Article  Google Scholar 

  • Kawaguchi S, Kurihara H, King R, Hale L, Berli T, Robinson JP, Ishida A, Wakita M, Virtue P, Nicol S, Ishimatsu A (2011) Will krill fare well under Southern Ocean acidification? Biol Lett 7:288–291. doi:10.1098/rsbl.2010.0777

  • Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat Clim Chang 3:843–847. doi:10.1038/nclimate1937

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso J-P (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896. doi:10.1111/gcb.12179

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi:10.3354/meps07802

    Article  CAS  Google Scholar 

  • Kurihara H, Ishimatsu A (2008) Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Pollut Bull 56:1086–1090. doi:10.1016/j.marpolbul.2008.03.023

    Article  CAS  Google Scholar 

  • Kurihara H, Matsui M, Furukawa H, Hayashi M, Ishimatsu A (2008) Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J Exp Mar Bio Ecol 367:41–46. doi:10.1016/j.jembe.2008.08.016

  • Kurihara H, Shimode S, Shirayama Y (2004) Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and Sea Urchins. J Oceanogr 60:743–750. doi:10.1007/s10872-004-5766-x

    Article  CAS  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  • Lewis CN, Brown KA, Edwards LA, Cooper G, Findlay HS (2013) Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc Natl Acad Sci USA 110:E4960–E4967. doi:10.1073/pnas.1315162110

    Article  CAS  Google Scholar 

  • Lindley JA (1977) Continuous plankton records: the distribution of the Euphausiacea (Crustacea: Malacostraca) in the North Atlantic and the North Sea, 1966-1967. J Biogeogr 4:121–133. doi:10.2307/3038157

    Article  Google Scholar 

  • Lindley JA (1982) Population dynamics and production of euphausiids. III. Meganyctiphanes norvegica and Nyctiphanes couchi in the North Atlantic Ocean and the North Sea. Mar Biol 66:37–46. doi:10.1007/BF00397252

    Article  Google Scholar 

  • Marinovic B, Mangel M (1999) Krill can shrink as an ecological adaptation to temporarily unfavourable environments. Ecol Lett 2:338–343

    Google Scholar 

  • Mauchline J, Fisher LR (1969) The biology of euphausiids. Adv Mar Biol 7:454

    Google Scholar 

  • Mayor DJ, Everett NR, Cook KB (2012) End of century ocean warming and acidification effects on reproductive success in a temperate marine copepod. J Plankton Res 34:258–262. doi:10.1093/plankt/fbr107

    Article  CAS  Google Scholar 

  • McConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI (2013) Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar Pollut Bull 73:428–434. doi:10.1016/j.marpolbul.2013.02.010

    Article  CAS  Google Scholar 

  • McElhany P, Shallin Busch D (2012) Appropriate pCO2 treatments in ocean acidification experiments. Mar Biol 160:1807–1812. doi:10.1007/s00227-012-2052-0

    Article  Google Scholar 

  • Mehlum F (2001) Crustaceans in the diet of adult common and Brünnich’s guillemots Uria aalge and U. lomvia in the Barents Sea during the breeding period. Mar Ornithol 29:19–22

    Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner H-O (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331. doi:10.5194/bg-6-2313-2009

    Article  CAS  Google Scholar 

  • Miller DG, Hampton I (1989) Biology and ecology of the Antarctic Krill (Euphausia superba Dana): a review. BIOMASS Scientific Series 9. 166

  • Nicol S (1994) Antartic krill—changing perceptions of its role in the Antartic ecosystem. In: Hempel G (ed) Antarct. Sci.—Glob. concerns. Springer, Berlin, Heidelberg, New York, pp 144–166

    Chapter  Google Scholar 

  • Nicol S, Stolp M, Nordstrom O (1992) Change in the gross biochemistry and mineral content accompanying the moult cycle in the Antarctic krill Euphausia superba. Mar Biol 113:201–209. doi:10.1007/BF00347272

    CAS  Google Scholar 

  • Pansch C, Schaub I, Havenhand J, Wahl M (2014) Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Glob Chang Biol 20:765–777. doi:10.1111/gcb.12478

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi:10.1126/science.1163156

    Article  Google Scholar 

  • Price HJ, Boyd KR, Boyd CM (1988) Omnivorous feeding behavior of the Antarctic krill Euphausia superba. Mar Biol 97:67–77. doi:10.1007/BF00391246

    Article  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Saba GK, Schofield O, Torres JJ, Ombres EH, Steinberg DK (2012) Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS One 7:e52224. doi:10.1371/journal.pone.0052224

    Article  CAS  Google Scholar 

  • Seibel BA, Walsh PJ (2003) Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206:641–650. doi:10.1242/jeb.00141

    Article  CAS  Google Scholar 

  • Skern-Mauritzen M, Johannesen E, Bjørge A, Øien N (2011) Baleen whale distributions and prey associations in the Barents Sea. Mar Ecol Prog Ser 426:289–301. doi:10.3354/meps09027

    Article  Google Scholar 

  • Telford M (1968) Changes in blood sugar composition during the molt cycle of the lobster Homarus americanus. Comp Biochem Physiol 26:917–926. doi:10.1016/0010-406X(68)90011-X

    Article  CAS  Google Scholar 

  • Therneau T (2012) A Package for Survival Analysis in S. R package version 2.36-14

  • Thomsen J, Casties I, Pansch C, Körtzinger A, Melzner F (2013) Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob Chang Biol 19:1017–1027. doi:10.1111/gcb.12109

    Article  Google Scholar 

  • Vehmaa A, Hogfors H, Gorokhova E, Brutemark A, Holmborn T, Engström-Öst J (2013) Projected marine climate change: effects on copepod oxidative status and reproduction. Ecol Evol 3:4548–4557. doi:10.1002/ece3.839

    Article  Google Scholar 

  • Wheatly MG, Henry RP (1992) Extracellular and intracellular acid-base regulation in crustaceans. J Exp Zool 263:127–142. doi:10.1002/jez.1402630204

    Article  CAS  Google Scholar 

  • Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271. doi:10.3354/meps09185

    Article  CAS  Google Scholar 

  • Williams R, Fragopoulu N (1985) Vertical distribution and nocturnal migration of Nyctiphanes couchi (Crustacea: Euphausiacea) in relation to the summer thermocline in the Celtic Sea. Mar Biol 89:257–262. doi:10.1007/BF00393659

    Article  Google Scholar 

Download references

Acknowledgments

We thank Inger Semb Johansen for technical assistance during the experiment, Linda Fonnes Lunde and Are Olsen for help in carbonate chemistry analysis, and three anonymous referees for valuable comments on earlier drafts of this manuscript. This work is a contribution to the ocean acidification research activities at the Institute of Marine Research, Bergen, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Sperfeld.

Additional information

Communicated by A. Atkinson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperfeld, E., Mangor-Jensen, A. & Dalpadado, P. Effect of increasing sea water pCO2 on the northern Atlantic krill species Nyctiphanes couchii . Mar Biol 161, 2359–2370 (2014). https://doi.org/10.1007/s00227-014-2511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2511-x

Keywords

Navigation