Skip to main content
Log in

Anderson’s Orthogonality Catastrophe

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give an upper bound on the modulus of the ground-state overlap of two non-interacting fermionic quantum systems with N particles in a large but finite volume L d of d-dimensional Euclidean space. The underlying one-particle Hamiltonians of the two systems are standard Schrödinger operators that differ by a non-negative compactly supported scalar potential. In the thermodynamic limit, the bound exhibits an asymptotic power-law decay in the system size L, showing that the ground-state overlap vanishes for macroscopic systems. The decay exponent can be interpreted in terms of the total scattering cross section averaged over all incident directions. The result confirms and generalises P. W. Anderson’s informal computation (Phys. Rev. Lett. 18:1049–1051, 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson P.W.: Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049–1051 (1967)

    Article  ADS  Google Scholar 

  2. Anderson P.W.: Ground state of a magnetic impurity in a metal. Phys. Rev. 164, 352–359 (1967)

    Article  ADS  Google Scholar 

  3. Bauer H.: Measure and integration theory. de Gruyter, Berlin (2001)

    Book  MATH  Google Scholar 

  4. Basor E.L., Chen Y.: The X-ray problem revisited. J. Phys. A 36, L175–L180 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Birman, M.Š., Èntina, S.B.: The stationary method in the abstract theory of scattering. Math. USSR Izv. 1, 391–420 (1967) [Russian original: Izv. Akad. Nauk SSSR Ser. Mat. 31, 401–430 (1967)]

  6. Broderix K., Hundertmark D., Leschke H.: Continuity properties of Schrödinger semigroups with magnetic fields. Rev. Math. Phys. 12, 181–225 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Elstrodt J.: Maß- und Integrationstheorie. Springer, Berlin (2005)

    MATH  Google Scholar 

  8. Frank R.L., Lewin M., Lieb E.H., Seiringer R.: Energy cost to make a hole in the Fermi sea. Phys. Rev. Lett. 106, 150402 (2011)

    Article  ADS  Google Scholar 

  9. Germinet F., Klein A.: Operator kernel estimates for functions of generalized Schrödinger operators. Proc. Amer. Math. Soc. 131, 911–920 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hamann D.R.: Orthogonality catastrophe in metals. Phys. Rev. Lett. 26, 1030–1032 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hentschel M., Guinea F.: Orthogonality catastrophe and Kondo effect in graphene. Phys. Rev. B 76, 115407 (2007)

    Article  ADS  Google Scholar 

  12. Heyl M., Kehrein S.: Crooks relation in optical spectra: Universality in work distributions for weak local quenches. Phys. Rev. Lett. 108, 190601 (2012)

    Article  ADS  Google Scholar 

  13. Heyl M., Kehrein S.: X-ray edge singularity in optical spectra of quantum dots. Phys. Rev. B 85, 155413 (2012)

    Article  ADS  Google Scholar 

  14. Hislop P.D., Müller P.: The spectral shift function for compactly supported perturbations of Schrödinger operators on large bounded domains. Proc. Amer. Math. Soc. 138, 2141–2150 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hunziker W., Sigal I.M.: The quantum N-body problem. J. Math. Phys. 41, 3448–3510 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Helmes R.W., Sindel M., Borda L., von Delft J.: Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons. Phys. Rev. B 72, 125301 (2005)

    Article  ADS  Google Scholar 

  17. Hentschel M., Ullmo D., Baranger H.U.: Fermi edge singularities in the mesoscopic regime: Anderson orthogonality catastrophe. Phys. Rev. B 72, 035310 (2005)

    Article  ADS  Google Scholar 

  18. Kirsch W.: Small perturbations and the eigenvalues of the Laplacian on large bounded domains. Proc. Amer. Math. Soc. 101, 509–512 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Küttler, H., Otte, P., Spitzer, W.: Anderson’s orthogonality catastrophe for one-dimensional systems, e-print arXiv:1301.4923, Ann. Henri Poincaré. doi:10.1007/s00023-013-0287-z

  20. Kaga H., Yosida K.: Orthogonality catastrophe due to local electron correlation. Prog. Theor. Phys. 59, 34–39 (1978)

    Article  ADS  Google Scholar 

  21. Nozières P., de Dominicis C.T.: Singularities in the X-ray absorption and emission of metals. iii. one-body theory exact solution. Phys. Rev. 178, 1097–1107 (1969)

    Article  ADS  Google Scholar 

  22. Ohtaka K., Tanabe Y.: Theory of the soft-X-ray edge problem in simple metals: historical survey and recent developments. Rev. Mod. Phys. 62, 929–991 (1990)

    Article  ADS  Google Scholar 

  23. Otte P.: An adiabatic theorem for section determinants of spectral projections. Math. Nachr. 278, 470–484 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Röder G., Hentschel M.: Orthogonality catastrophe in ballistic quantum dots: Role of level degeneracies and confinement geometry. Phys. Rev. B 82, 125312 (2010)

    Article  ADS  Google Scholar 

  25. Rivier N., Simanek E.: Exact calculation of the orthogonality catastrophe in metals. Phys. Rev. Lett. 26, 435–438 (1971)

    Article  ADS  Google Scholar 

  26. Reed M., Simon B.: Methods of modern mathematical physics III. Academic Press, New York (1979)

    MATH  Google Scholar 

  27. Simon B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7 447–526 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Simon, B.: Trace ideals and their applications, Mathematical Surveys and Monographs, vol. 120, 2nd ed. American Mathematical Society, Providence (2005)

  29. Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)

    Google Scholar 

  30. Stollmann P.: Caught by disorder: bound states in random media, Progress in Mathematical Physics, vol. 20. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  31. Türeci, H.E., Hanl, M., Claassen, M., Weichselbaum, A., Hecht, T., Braunecker, B., Govorov, A., Glazman, L., Imamoglu, A., von Delft, J.: Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards Kondo correlations. Phys. Rev. Lett. 106, 107402 (2011)

    Google Scholar 

  32. Weidmann, J.: Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer, New York (1980)

  33. Yafaev D.: Scattering theory: some old and new problems, Lecture Notes in Mathematics, vol. 1735. Springer, Berlin (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Müller.

Additional information

Communicated by B. Simon

Work supported by Sfb/Tr 12 of the German Research Council (Dfg).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebert, M., Küttler, H. & Müller, P. Anderson’s Orthogonality Catastrophe. Commun. Math. Phys. 329, 979–998 (2014). https://doi.org/10.1007/s00220-014-1914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1914-3

Keywords

Navigation