Skip to main content
Log in

Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An automated method is presented for fast simulation of (bio)transformation products (TPs) of the organophosphate insecticide chlorpyrifos (CPF) based on electrochemistry coupled online to liquid chromatography-mass spectrometry (EC-LC-MS). Oxidative TPs were produced by a boron doped diamond (BDD) electrode, separated by reversed phase HPLC and online detected by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, EC oxidative TPs were investigated by HPLC-tandem mass spectrometry (LC-MS/MS) and FT-ICR high resolution mass spectrometry (HRMS) and compared to in vitro assay metabolites (rat and human liver microsomes). Main phase I metabolites of CPF: chlorpyrifos oxon (CPF oxon), trichloropyridinol (TCP), diethylthiophosphate (DETP), diethylphosphate (DEP), desethyl chlorpyrifos (De-CPF), and desethyl chlorpyrifos oxon (De-CPF oxon), were successfully identified by the developed EC-LC-MS method. The EC-LC-MS method showed similar metabolites compared to the in vitro assay with possibilities of determining reactive species. Our results reveal that online EC-(LC)-MS brings an advantage on time of analysis by eliminating sample preparation steps and matrix complexity compared to conventional in vivo or in vitro methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC Trends Anal Chem. 2015;66:32–44.

    Article  CAS  Google Scholar 

  2. Seiwert B, Golan-Rozen N, Weidauer C, Riemenschneider C, Chefetz B, Hadar Y, et al. Electrochemistry combined with LC-HRMS: elucidating transformation products of the recalcitrant pharmaceutical compound carbamazepine generated by the white-rot fungus Pleurotus ostreatus. Environ Sci Technol. 2015;49:12342–50.

    Article  CAS  Google Scholar 

  3. Faber H, Vogel M, Karst U. Electrochemistry/mass spectrometry as a tool in metabolism studies—a review. Anal Chim Acta. 2014;834:9–21.

    Article  CAS  Google Scholar 

  4. Arora T, Mehta AK, Joshi V, Mehta KD, Rathor N, Mediratta PK, et al. Substitute of animals in drug research: an approach towards fulfillment of 4R’s. Indian J Pharm Sci. 2011;73:1–6.

    Article  CAS  Google Scholar 

  5. Boix C, Ibanez M, Sancho JV, Parsons JR, de Voogt P, Hernandez F. Biotransformation of pharmaceuticals in surface water and during waste water treatment: identification and occurrence of transformation products. J Hazard Mater. 2016;302:175–87.

    Article  CAS  Google Scholar 

  6. Jahn S, Karst U. Electrochemistry coupled to (liquid chromatography/) mass spectrometry—current state and future perspectives. J Chromatogr A. 2012;1259:16–49.

    Article  CAS  Google Scholar 

  7. Bruins AP. An overview of electrochemistry combined with mass spectrometry. TrAC Trend Anal Chem. 2015;70:14–9.

    Article  CAS  Google Scholar 

  8. Jurva U, Wikstrom HV, Weidolf L, Bruins AP. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions. Rapid Commun Mass Spectrom. 2003;17:800–10.

    Article  CAS  Google Scholar 

  9. Buter L, Vogel M, Karst U. Adduct formation of electrochemically generated reactive intermediates with biomolecules. TrAC Trends Anal Chem. 2015;70:74–91.

    Article  Google Scholar 

  10. Baumann A, Pfeifer T, Melles D, Karst U. Investigation of the biotransformation of melarsoprol by electrochemistry coupled to complementary LC/ESI-MS and LC/ICP-MS analysis. Anal Bioanal Chem. 2013;405:5249–58.

    Article  CAS  Google Scholar 

  11. Plattner S, Erb R, Pitterl F, Brouwer HJ, Oberacher H. Formation and characterization of covalent guanosine adducts with electrochemistry-liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2012;883:198–204.

    Article  Google Scholar 

  12. Bussy U, Boisseau R, Thobie-Gautier C, Boujtita M. Electrochemistry-mass spectrometry to study reactive drug metabolites and CYP450 simulations. TrAC Trends Anal Chem. 2015;70:67–73.

    Article  CAS  Google Scholar 

  13. Lohmann W, Dotzer R, Gutter G, Van Leeuwen SM, Karst U. On-line electrochemistry/liquid chromatography/mass spectrometry for the simulation of pesticide metabolism. J Am Soc Mass Spectrom. 2009;20:138–45.

    Article  CAS  Google Scholar 

  14. Faber H, Lutze H, Lareo PL, Frensemeier L, Vogel M, Schmidt TC, et al. Liquid chromatography/mass spectrometry to study oxidative degradation of environmentally relevant pharmaceuticals by electrochemistry and ozonation. J Chromatogr A. 2014;1343:152–9.

    Article  CAS  Google Scholar 

  15. Hoffmann T, Hofmann D, Klumpp E, Kuppers S. Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment. Anal Bioanal Chem. 2011;399:1859–68.

    Article  CAS  Google Scholar 

  16. RAFA_Report. The rapid alert system for food and feed—annual report. 2014.

  17. Choi K, Joo H, Rose RL, Hodgson E. Metabolism of chlorpyrifos and chlorpyrifos oxon by human hepatocytes. J Biochem Mol Toxicol. 2006;20:279–91.

    Article  CAS  Google Scholar 

  18. Bicker W, Lammerhofer M, Lindner W. Determination of chlorpyrifos metabolites in human urine by reversed-phase/weak anion exchange liquid chromatography-electrospray ionisation-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2005;822:160–9.

    Article  CAS  Google Scholar 

  19. Sancho JV, Pozo OJ, Hernandez F. Direct determination of chlorpyrifos and its main metabolite 3,5,6-trichloro-2-pyridinol in human serum and urine by coupled-column liquid chromatography/electrospray-tandem mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:1485–90.

    Article  CAS  Google Scholar 

  20. Williamson LN, Terry AV, Bartlett MG. Determination of chlorpyrifos and its metabolites in rat brain tissue using coupled-column liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:2689–95.

    Article  CAS  Google Scholar 

  21. Diehl G, Karst U. On-line electrochemistry—MS and related techniques. Anal Bioanal Chem. 2002;373:390–8.

    Article  CAS  Google Scholar 

  22. Mora JF, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB. Electrochemical processes in electrospray ionization mass spectrometry. J Mass Spectrom: JMS. 2000;35:939–52.

    Article  CAS  Google Scholar 

  23. Tang J, Cao Y, Rose RL, Brimfield AA, Dai D, Goldstein JA, et al. Metabolism of chlorpyrifos by human cytochrome P450 isoforms and human, mouse, and rat liver microsomes. Drug Metab Dispos. 2001;29:1201–4.

    CAS  Google Scholar 

  24. Sono M, Roach MP, Coulter ED, Dawson JH. Heme-containing oxygenases. Chem Rev. 1996;96:2841–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by School of Analytical Sciences Adlershof (SALSA) under Deutsche Forschungsgemeinschaft (DFG) program, Germany. The authors would like to thank Mr. Boris Neumann (Proteome Factory AG, Berlin, Germany) for HRMS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Koch.

Ethics declarations

Conflict of interest

The author declared that there is no any conflict of interest on this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekonnen, T.F., Panne, U. & Koch, M. Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos. Anal Bioanal Chem 409, 3359–3368 (2017). https://doi.org/10.1007/s00216-017-0277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0277-y

Keywords

Navigation