Skip to main content
Log in

Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV–vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of “unknown” model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer–Lambert–Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar N, Bansal A, Sarma G, Rawal RK. Chemometrics tools used in analytical chemistry: an overview. Talanta. 2014;123:186–99.

    Article  CAS  Google Scholar 

  2. Hyvärinen A. Independent component analysis: recent advances. Philos Trans R Soc Lond A. 2013;371:20110534. doi:10.1098/rsta.2011.0534.

    Article  Google Scholar 

  3. Rutledge DN, Jouan-Rimbaud Bouveresse D. Independent components analysis with the JADE algorithm. Trends Anal Chem. 2013;50:22–32.

    Article  CAS  Google Scholar 

  4. Golshan A, Abdollahi H, Beyramysoltan S, et al. A review of recent methods for the determination of ranges of feasible solutions resulting from soft modelling analyses of multivariate data. Anal Chim Acta. 2016;911:1–13.

    Article  CAS  Google Scholar 

  5. de Juan A, Tauler RÃ. Multivariate curve resolution (MCR) from 2000: progress in concepts and applications. Crit Rev Anal Chem. 2006;36(3–4):163–76.

    Article  Google Scholar 

  6. Ruckebusch C, Blanchet L. Multivariate curve resolution: a review of advanced and tailored applications and challenges. Anal Chim Acta. 2013;65:28–36.

    Article  Google Scholar 

  7. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.

    Article  CAS  Google Scholar 

  8. Monakhova YB, Astakhov SA, Kraskov A, Mushtakova SP. Independent components in spectroscopic analysis of complex mixtures. Chemom Intell Lab Syst. 2010;103:108–15.

    Article  CAS  Google Scholar 

  9. Monakhova YB, Mushtakova SP, Kolesnikova SS, Astakhov SA. Chemometrics-assisted spectrophotometric method for simultaneous determination of vitamins in complex mixtures. Anal Bioanal Chem. 2010;397:1297–306.

    Article  CAS  Google Scholar 

  10. Monakhova YB, Tsikin AM, Kuballa T, Lachenmeier DW, Mushtakova SP. Independent component analysis (ICA) algorithms for improved spectral deconvolution of overlapped signals in 1H NMR analysis: application to foods and related products. Magn Reson Chem. 2014;52(5):231–40.

    Article  CAS  Google Scholar 

  11. Kassouf A, Ruellan A, Jouan-Rimbaud Bouveresse D, et al. Attenuated total reflectance-mid infrared spectroscopy (ATR-MIR) coupled with independent components analysis (ICA): A fast method to determine plasticizers in polylactide (PLA). Talanta. 2016;147:569–80.

    Article  CAS  Google Scholar 

  12. Ammari F, Redjdal L, Rutledge DN. Detection of orange juice frauds using front-face fluorescence spectroscopy and independent components analysis. Food Chem. 2015;168:211–7.

    Article  CAS  Google Scholar 

  13. Monakhova YB, Lachenmeier DW, Kuballa T, Mushtakova SP. Standardless multicomponent qNMR analysis of compounds with overlapped resonances based on the combination of ICA and PULCON. Magn Reson Chem. 2015;53:821–8.

    Article  CAS  Google Scholar 

  14. Wider G, Dreier L. Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc. 2006;128(8):2571–6.

    Article  CAS  Google Scholar 

  15. Stögbauer H, Kraskov A, Astakhov SA, Grassberger P. Least-dependent-component analysis based on mutual information. Phys Rev E. 2004;70:066123.

    Article  Google Scholar 

  16. Monakhova YB, Mushtakova SP. Mathematical spectra pretreatment for independent component analysis: identification and quantitative analysis. J Anal Chem. 2012;67:1044–51.

    Google Scholar 

  17. Monakhova YB, Tsikin AM, Mushtakova SP. Independent components analysis as an alternative to principal component analysis and discriminant analysis algorithms in the processing of spectrometric data. J Anal Chem. 2015;70:1055–61.

    Article  CAS  Google Scholar 

  18. Monakhova YB, Rutledge DN, Roßmann A, et al. Determination of rice type by 1H NMR spectroscopy in combination with different chemometric tools. J Chemom. 2014;28:83–92.

    Article  CAS  Google Scholar 

  19. Chen J, Wang XZ. A new approach to near-infrared spectral data analysis using independent component analysis. J Chem Inf Model. 2001;41:992–1001.

    CAS  Google Scholar 

  20. Zhao C, Gao F. Multiset independent component regression (MsICR) based statistical data analysis and calibration modeling. Ind Eng Chem Res. 2013;52:2917–24.

    Article  CAS  Google Scholar 

  21. Shao X, Wang W, Houa Z, Cai W. A new regression method based on independent component analysis. Talanta. 2006;69:676–80.

    Article  CAS  Google Scholar 

  22. Domingo-Almenara X, Perera A, Ramírez N, Cañellas N, Correig X, Brezmes J. J Chromatogr A. 2015;1409:226–33.

    Article  CAS  Google Scholar 

  23. Al-Mbaideen A, Benaissa M. Determination of glucose concentration from NIR spectra using independent component regression. Chemom Intell Lab Syst. 2011;105:131–5.

    Article  CAS  Google Scholar 

  24. Kaneko H, Arakawa M, Funatsu K. Development of a new regression analysis method using independent component analysis. J Chem Inf Model. 2008;48:534–41.

    Article  CAS  Google Scholar 

  25. Gustafsson MG. Independent component analysis yields chemically interpretable latent variables in multivariate regression. J Chem Inf Model. 2005;45:1244–55.

    Article  CAS  Google Scholar 

  26. Wang G, Ding Q, Hou Z. Independent component analysis and its applications in signal processing for analytical chemistry. Trends Anal Chem. 2008;27:368–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.B.M. acknowledges funding in the framework of the Russian President’s Grant for Young Scientists (MK-6226.2016.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia B. Monakhova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monakhova, Y.B., Mushtakova, S.P. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling. Anal Bioanal Chem 409, 3319–3327 (2017). https://doi.org/10.1007/s00216-017-0275-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0275-0

Keywords

Navigation