Skip to main content
Log in

Determination of ω-6 and ω-3 PUFA metabolites in human urine samples using UPLC/MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2015

Abstract

The ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are the precursors of various bioactive lipid mediators including prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acid, isoprostanes, lipoxins, and resolvins (Rvs). These lipid mediators play important roles in various physiological and pathological processes. The quantitative determination of PUFA metabolites seems necessary for disease research and for developing biomarkers. However, there is a paucity of analytical methods for the quantification of ω-6 and ω-3 PUFA metabolites—the specialized pro-resolving mediators (SPMs) present in the human urine. We developed a method for the quantification of ω-6 and ω-3 PUFA metabolites present in human urine using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS). The developed method shows good linearity, with a correlation coefficient >0.99 for all of the analytes. The validation results indicate that our method is adequately reliable, accurate, and precise. The method was successfully used to examine urine samples obtained from 43 healthy volunteers. We could identify 20 PUFA metabolites, and this is the first report of the quantitative determination of RvD1, 17(R)-RvD1, 11-dehydro thromboxane B3, RvE2, and 5(S)-HETE in human urine. The urinary 8-iso PGF and PGE2 levels were significantly higher in the men smokers than in the men nonsmokers (p < 0.05). In this study, we developed an accurate, precise, and novel analytical method for estimating the ω-6 and ω-3 PUFA metabolites, and this is the first report that the SPMs derived from EPA and DHA are present in human urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

COX:

Cyclooxygenase

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

HETE:

Hydroxyeicosatetraenoic acid

IS:

Internal standard

IsoPs:

Isoprostanes

LLOQ:

Lower limit of quantification

LOX:

Lipoxygenase

LT:

Leukotriene

LX:

Lipoxin

MaR:

Maresin

PD1:

Protectin D1

PG:

Prostaglandin

PUFA:

Polyunsaturated fatty acid

SPE:

Solid-phase extraction

SPM:

Specialized pro-resolving mediator

SRM:

Selected reaction monitoring

Rv:

Resolvin

TX:

Thromboxane

UPLC/MS/MS:

Ultra-performance liquid chromatography/tandem mass spectrometry

References

  1. Buczynski MW, Dumlao DS, Dennis EA (2009) Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 50:1015–1038

    Article  CAS  Google Scholar 

  2. Hishinuma T, Koseki Y, Murai Y, Yamazaki T, Suzuki K, Mizugaki M (1999) Urinary thromboxane A2/prostacyclin balance reflects the pathological state of a diabetic. Prostaglandins Other Lipid Mediat 58:263–271

    Article  CAS  Google Scholar 

  3. Murphey LJ, Williams MK, Sanchez SC, Byrne LM, Csiki I, Oates JA, Johnson DH, Morrow JD (2004) Quantification of the major urinary metabolite of PGE2 by a liquid chromatographic/mass spectrometric assay: determination of cyclooxygenase-specific PGE2 synthesis in healthy humans and those with lung cancer. Anal Biochem 334:266–275

    Article  CAS  Google Scholar 

  4. Cai Q, Gao YT, Chow WH, Shu XO, Yang G, Ji BT, Wen W, Rothman N, Li HL, Morrow JD, Zheng W (2006) Prospective study of urinary prostaglandin E2 metabolite and colorectal cancer risk. J Clin Oncol 24:5010–5016

    Article  CAS  Google Scholar 

  5. Dong LM, Shu XO, Gao YT, Milne G, Ji BT, Yang G, Li HL, Rothman N, Zheng W, Chow WH, Abnet CC (2009) Urinary prostaglandin E2 metabolite and gastric cancer risk in the Shanghai women’s health study. Cancer Epidemiol Biomarkers Prev 18:3075–3078

    Article  CAS  Google Scholar 

  6. Ono E, Taniguchi M, Mita H, Fukutomi Y, Higashi N, Miyazaki E, Kumamoto T, Akiyama K (2009) Increased production of cysteinyl leukotrienes and prostaglandin D2 during human anaphylaxis. Clin Exp Allergy 39:72–80

    Article  CAS  Google Scholar 

  7. Abd El-Motaleb GS, Abou Amer AA, Elawa GM, Abo Alsood Abd Elfattah M (2014) Study of urinary leukotriene E4 levels in children with acute asthma. Int J Gen Med 7:131–135

    Article  CAS  Google Scholar 

  8. González-Núñez D, Claria J, Rivera F, Poch E (2001) Increased levels of 12(S)-HETE in patients with essential hypertension. Hypertension 37:334–338

    Article  Google Scholar 

  9. Olson MT, Kickler TS, Lawson JA, McLean RC, Jani J, FitzGerald GA, Rade JJ (2012) Effect of assay specificity on the association of urine 11-dehydro thromboxane B2 determination with cardiovascular risk. J Thromb Haemost 10:2462–2469

    Article  CAS  Google Scholar 

  10. Kim KM, Jung BH, Paeng KJ, Kim I, Chung BC (2004) Increased urinary F(2)-isoprostanes levels in the patients with Alzheimer’s disease. Brain Res Bull 64:47–51

    Article  CAS  Google Scholar 

  11. Ohnishi H, Saito Y (2013) Eicosapentaenoic acid (EPA) reduces cardiovascular events: relationship with the EPA/arachidonic acid ratio. J Atheroscler Thromb 20:861–877

    Article  Google Scholar 

  12. Sublette ME, Galfalvy HC, Hibbeln JR, Keilp JG, Malone KM, Oquendo MA, Mann JJ (2014) Polyunsaturated fatty acid associations with dopaminergic indices in major depressive disorder. Int J Neuropsychopharmacol 17:383–391

    Article  CAS  Google Scholar 

  13. Leitzmann MF, Stampfer MJ, Michaud DS, Augustsson K, Colditz GC, Willett WC, Giovannucci EL (2004) Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am J Clin Nutr 80:204–216

    CAS  Google Scholar 

  14. Bannenberg G, Serhan CN (2010) Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta 1801:1260–1273

    Article  CAS  Google Scholar 

  15. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137

    Article  CAS  Google Scholar 

  16. Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 177:1576–1591

    Article  CAS  Google Scholar 

  17. Ridker PM (2009) Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). J Thromb Haemost 1:332–339

    Article  Google Scholar 

  18. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    Article  CAS  Google Scholar 

  19. Janakiram NB, Mohammed A, Rao CV (2011) Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer Metastasis Rev 30:507–523

    Article  CAS  Google Scholar 

  20. Tsikas D, Zoerner AA (2014) Analysis of eicosanoids by LC-MS/MS and GC-MS/MS: a historical retrospect and a discussion. J Chromatogr B Analyt Technol Biomed Life Sci 964:79–88

    Article  CAS  Google Scholar 

  21. Tsikas D (1998) Application of gas chromatography–mass spectrometry and gas chromatography-tandem mass spectrometry to assess in vivo synthesis of prostaglandins, thromboxane, leukotrienes, isoprostanes and related compounds in humans. J Chromatogr B Biomed Sci Appl 717:201–245

    Article  CAS  Google Scholar 

  22. Schweer H, Kammer J, Kühl PG, Seyberth HW (1986) Determination of peripheral plasma prostanoid concentration: an unreliable index of ‘in vivo’ prostanoid activity. Eur J Clin Pharmacol 31:303–305

    Article  CAS  Google Scholar 

  23. Roberts LJ, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513

    Article  CAS  Google Scholar 

  24. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A 87:9383–9387

    Article  CAS  Google Scholar 

  25. Yan Z, Mas E, Mori TA, Croft KD, Barden AE (2010) A significant proportion of F2-isoprostanes in human urine are excreted as glucuronide conjugates. Anal Biochem 403:126–128

    Article  CAS  Google Scholar 

  26. Taylor AW, Bruno RS, Traber MG (2008) Women and smokers have elevated urinary F(2)-isoprostane metabolites: a novel extraction and LC-MS methodology. Lipids 43:925–936

    Article  CAS  Google Scholar 

  27. Neale JR, Dean BJ (2008) Liquid chromatography-tandem mass spectrometric quantification of the dehydration product of tetranor PGE-M, the major urinary metabolite of prostaglandin E(2) in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 871:72–77

    Article  CAS  Google Scholar 

  28. Sterz K, Scherer G, Ecker J (2012) A simple and robust UPLC-SRM/MS method to quantify urinary eicosanoids. J Lipid Res 53:1026–1036

    Article  CAS  Google Scholar 

  29. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217:3929–3937

    Article  CAS  Google Scholar 

  30. Song WL, Lawson JA, Wang M, Zou H, FitzGerald GA (2007) Noninvasive assessment of the role of cyclooxygenases in cardiovascular health: a detailed HPLC/MS/MS method. Methods Enzymol 433:51–72

    Article  CAS  Google Scholar 

  31. Yan W, Byrd GD, Ogden MW (2007) Quantitation of isoprostane isomers in human urine from smokers and nonsmokers by LC-MS/MS. J Lipid Res 48:1607–1617

    Article  CAS  Google Scholar 

  32. Pelikan Z (2011) Delayed asthmatic response to bronchial challenge with allergen-mediators, eicosanoids, eosinophil and neutrophil constituents in the blood and urine. Respiration 82:225–236

    Article  CAS  Google Scholar 

  33. Blatnik M, Steenwyk RC (2010) Quantification of urinary PGEm, 6-keto PGF(1alpha) and 2,3-dinor-6-keto PGF(1alpha) by UFLC-MS/MS before and after exercise. Prostaglandins Other Lipid Mediat 93:8–13

    Article  CAS  Google Scholar 

  34. Yamaguchi H, Higashi N, Mita H, Ono E, Komase Y, Nakagawa T, Miyazawa T, Akiyama K, Taniguchi M (2011) Urinary concentrations of 15-epimer of lipoxin A(4) are lower in patients with aspirin-intolerant compared with aspirin-tolerant asthma. Clin Exp Allergy 41:1711–1718

    Article  CAS  Google Scholar 

  35. Lorenz R, Helmer P, Uedelhoven W, Zimmer B, Weber PC (1989) A new method using simple solid phase extraction for the rapid gas-chromatographic mass-spectrometric determination of 11- dehydrothromboxane B2 in urine. Prostaglandins 38:157–170

  36. Fischer S, von Schacky C, Schweer H (1988) Prostaglandins E3 and F3 alpha are excreted in human urine after ingestion of n-3 polyunsaturated fatty acids. Biochim Biophys Acta 963:501–508

  37. Chappell DL, Xiao X, Radziszewski W, Laterza OF (2011) Development and validation of a LC/MS/MS method for 6-keto PGF1a, a metabolite of prostacyclin (PGI2). J Pharm Biomed Anal 56:600–603

  38. Fauler J, Tsikas D, Mayatepek E, Keppler D, Frölich JC (1994) Impaired degradation of prostaglandins and thromboxane in Zellweger syndrome. Pediatr Res 36:449–455

  39. Balgoma D, Larsson J, Rokach J, Lawson JA, Daham K, Dahlén B, Dahlén SE, Wheelock CE (2013) Quantification of lipid mediator metabolites in human urine from asthma patients by electrospray ionization mass spectrometry: controlling matrix effects. Anal Chem 85:7866–7874

    Article  CAS  Google Scholar 

  40. Medina S, Domínguez-Perles R, Gil JI, Ferreres F, García-Viguera C, Martínez-Sanz JM, Gil-Izquierdo A (2012) A ultra-pressure liquid chromatography/triple quadrupole tandem mass spectrometry method for the analysis of 13 eicosanoids in human urine and quantitative 24 hour values in healthy volunteers in a controlled constant diet. Rapid Commun Mass Spectrom 26:1249–1257

    Article  CAS  Google Scholar 

  41. Liu J, Liang Q, Frost-Pineda K, Muhammad-Kah R, Rimmer L, Roethig H, Mendes P, Sarkar M (2011) Relationship between biomarkers of cigarette smoke exposure and biomarkers of inflammation, oxidative stress, and platelet activation in adult cigarette smokers. Cancer Epidemiol Biomarkers Prev 20:1760–1769

    Article  CAS  Google Scholar 

  42. Zhou Y, Wang ZX, Tang MP, Yao CJ, Xu WJ, Wang LY, Qiao ZD (2010) Nicotine induces cyclooxygenase-2 and prostaglandin E(2) expression in human umbilical vein endothe-lial cells. Int Immunopharmacol 10:461–466

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank volunteers for donating urine samples. This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number 25460184 (HY), and by the Towa Foundation for Food Research (HY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Yamaguchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, A., Fukuda, H., Shiida, N. et al. Determination of ω-6 and ω-3 PUFA metabolites in human urine samples using UPLC/MS/MS. Anal Bioanal Chem 407, 1625–1639 (2015). https://doi.org/10.1007/s00216-014-8412-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8412-5

Keywords

Navigation