Skip to main content

Advertisement

Log in

Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Monitoring of intracellular redox status in a bacterial cell provides vital information about the physiological status of the cell, which can be exploited in several applications such as metabolic engineering and computational modeling. Fluorescent protein-based genetically encoded sensors can be used to monitor intracellular oxidation/reduction status. This study reports the development of a redox sensor for intracellular measurements using fluorescent protein pairs and the phenomenon of Förster resonance energy transfer (FRET). For the development of the sensor, fluorescent proteins Citrine and Cerulean were genetically modified to carry reactive cysteine residues on the protein surface close to the chromophore and a constructed FRET pair was fused using a biotinylation domain as a linker. In oxidized state, the FRET pairs are in close proximity by labile disulfide bond formation resulting in higher FRET efficiency. In reducing environment, the FRET is diminished due to the increased distance between FRET pairs providing large dynamic measurement range to the sensor. Intracellular studies in Escherichia coli mutants revealed the capability of the sensor in detecting real-time redox variations at single cell level. The results were validated by intensity based and time resolved measurements. The functional immobilization of the fluorescent protein-based FRET sensor at solid surfaces for in vitro applications was also demonstrated.

Schematic representation of FRET-based redox sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bob BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system: perspective on its discovery, present status, and future development. Arch Biochem Biophys 288:1

    Article  Google Scholar 

  2. Rabinowitz JD, Vacchino JF, Beeson C, McConnell HM (1998) Potentiometric measurement of intracellular redox activity. J Am Chem Soc 120:2464

    Article  CAS  Google Scholar 

  3. Barron JT, Gu L, Parrillo JE (2000) NADH/NAD redox state of cytoplasmic glycolytic compartments in vascular smooth muscle. Am J Physiol Heart Circ Physiol 279:H2872

    CAS  Google Scholar 

  4. Gorodetsky AA, Dietrich LEP, Lee PE, Demple B, Newman DK, Barton JK (2008) DNA binding shifts the redox potential of the transcription factor SoxR. Proc Natl Acad Sci U S A 105:3684

    Article  CAS  Google Scholar 

  5. Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21–48

    Article  CAS  Google Scholar 

  6. Oktyabrsky ON, Smirnova GV (2007) Redox regulation of cellular functions. Biochemistry (Mosc) 72:132

    Article  CAS  Google Scholar 

  7. Sen CK (2000) Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul 36:1

    Article  CAS  Google Scholar 

  8. Brandes N, Schmitt S, Jakob U (2009) Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal 11:997

    Article  CAS  Google Scholar 

  9. Bykov VJ, Lambert JM, Hainaut P, Wiman KG (2009) Mutant p53 rescue and modulation of p53 redox state. Cell Cycle 8:2509

    Article  CAS  Google Scholar 

  10. Yano T, Oku M, Akeyama N, Itoyama A, Yurimoto H, Kuge S, Fujiki Y, Sakai Y (2010) A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes. Mol Cell Biol 30:3758

    Article  CAS  Google Scholar 

  11. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191

    Article  CAS  Google Scholar 

  12. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44:921

    Article  CAS  Google Scholar 

  13. Hwang C, Sinskey A, Lodish H (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496

    Article  CAS  Google Scholar 

  14. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995

    Article  CAS  Google Scholar 

  15. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  16. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906

    Article  CAS  Google Scholar 

  17. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905

    Article  CAS  Google Scholar 

  18. Ostergaard H, Henriksen A, Hansen FG, Winther JR (2001) Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBO J 20:5853

    Article  CAS  Google Scholar 

  19. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440

    CAS  Google Scholar 

  20. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044

    Article  CAS  Google Scholar 

  21. Hoi H, Ding Y, Campbell RE (2013) In: Medintz IL, Hildebrandt N (eds) FRET—Förster resonance energy transfer: from theory to applications. Wiley, Weinheim

    Google Scholar 

  22. Truong K, Sawano A, Miyawaki A, Ikura M (2007) Calcium indicators based on calmodulin-fluorescent protein fusions. Methods Mol Biol 352:71

    CAS  Google Scholar 

  23. VanEngelenburg SB, Palmer AE (2008) Fluorescent biosensors of protein function. Curr Opin Chem Biol 12:60

    Article  CAS  Google Scholar 

  24. Miyawaki A (2011) Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu Rev Biochem 80:357

    Article  CAS  Google Scholar 

  25. Kolossov VL, Spring BQ, Sokolowski A, Conour JE, Clegg RM, Kenis PJA, Gaskins HR (2008) Engineering redox-sensitive linkers for genetically encoded FRET-based biosensors. Exp Biol Med 233:238

    Article  CAS  Google Scholar 

  26. Reddy DV, Shenoy BC, Carey PR, Sonnichsen FD (2000) High resolution solution structure of the 1.3S subunit of transcarboxylase from Propionibacterium shermanii. Biochemistry 39:2509

    Article  CAS  Google Scholar 

  27. Maniatis T, Fritsch EF, Sambrook J (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  28. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188

    Article  CAS  Google Scholar 

  29. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445

    Article  CAS  Google Scholar 

  30. Santala V, Lamminmäki U (2004) Production of a biotinylated single-chain antibody fragment in the cytoplasm of Escherichia coli. J Immunol Methods 284:165

    Article  CAS  Google Scholar 

  31. Abraham BG, Tkachenko NV, Santala V, Lemmetyinen H, Karp M (2011) Bidirectional fluorescence resonance energy transfer (FRET) in Mutated and Chemically Modified Yellow Fluorescent Protein (YFP). Bioconjug Chem 22:227

    Article  CAS  Google Scholar 

  32. Santala S, Efimova E, Kivinen V, Larjo A, Aho T, Karp M, Santala V (2011) Improved triacylglycerol production in acinetobacter baylyi ADP1 by metabolic engineering. Microb Cell Factories 10:36

    Article  CAS  Google Scholar 

  33. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353

    Article  CAS  Google Scholar 

  34. Wallrabe H, Periasamy A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16:19

    Article  CAS  Google Scholar 

  35. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671

  36. Gavet O, Pines J (2010) Activation of cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol 189:247

    Article  CAS  Google Scholar 

  37. Suzuki M, Ito Y, Savage HE, Husimi Y, Douglas KT (2003) Intramolecular fluorescent resonance energy transfer (FRET) by BODIPY chemical modification of cysteine-engineered mutants of green fluorescent protein. Chem Lett 32:306

    Article  CAS  Google Scholar 

  38. Liu J, Lu Y (2002) FRET study of a trifluorophore-labeled DNAzyme. J Am Chem Soc 124:15208

    Article  CAS  Google Scholar 

  39. Gohlke C, Murchie AI, Lilley DM, Clegg RM (1994) Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 91:11660

    Article  CAS  Google Scholar 

  40. Clegg RM, Murchie AI, Zechel A, Lilley DM (1993) Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 90:2994

    Article  CAS  Google Scholar 

  41. Kolossov VL, Spring BQ, Clegg RM, Henry JJ, Sokolowski A, Kenis PJA, Gaskins HR (2011) Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments. Exp Biol Med 236:681

    Article  CAS  Google Scholar 

  42. Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012

    Article  CAS  Google Scholar 

  43. Evers TH, Van Dongen EMWM, Faesen AC, Meijer EW, Merkx M (2006) Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry (N Y) 45:13183

    Article  CAS  Google Scholar 

  44. Evers TH, Appelhof MAM, de Graaf-Heuvelmans PTHM, Meijer EW, Merkx M (2007) Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras. J Mol Biol 374:411

    Article  CAS  Google Scholar 

  45. Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2:954

    Article  CAS  Google Scholar 

  46. Sarkar P, Koushik SV, Vogel SS, Gryczynski I, Gryczynski Z (2009) Photophysical properties of Cerulean and Venus fluorescent proteins. J Biomed Opt 14:034047

    Article  Google Scholar 

  47. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782

    Article  CAS  Google Scholar 

  48. Campbell TN, Choy FYM (2001) The effect of pH on green fluorescent protein: a brief review. Mol Biol Today 2:1

    CAS  Google Scholar 

  49. Saeed IA, Ashraf SS (2009) Denaturation studies reveal significant differences between GFP and blue fluorescent protein. Int J Biol Macromol 45:236

    Article  CAS  Google Scholar 

  50. Veselov AA, Abraham BG, Lemmetyinen H, Karp MT, Tkachenko NV (2012) Photochemical properties and sensor applications of modified yellow fluorescent protein (YFP) covalently attached to the surfaces of etched optical fibers (EOFs). Anal Bioanal Chem 402:1149

    Article  CAS  Google Scholar 

  51. Elsliger M, Wachter RM, Hanson GT, Kallio K, Remington SJ (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry (N Y) 38:5296

    Article  CAS  Google Scholar 

  52. Saito K, Welker E, Scheraga HA (2001) Folding of a disulfide-bonded protein species with free thiol(s): competition between conformational folding and disulfide reshuffling in an intermediate of bovine pancreatic ribonuclease A. Biochemistry 40:15002

    Article  CAS  Google Scholar 

  53. Olsen KN, Budde BB, Siegumfeldt H, Rechinger KB, Jakobsen M, Ingmer H (2002) Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy. Appl Environ Microbiol 68:4145

    Article  CAS  Google Scholar 

  54. Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359

    CAS  Google Scholar 

  55. Mamathambika BS, Bardwell JC (2008) Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol 24:211

    Article  CAS  Google Scholar 

  56. Beckwith J (2007) What lies beyond Uranus? Preconceptions, ignorance, serendipity and suppressors in the search for biology’s secrets. Genetics 176:733

    Article  CAS  Google Scholar 

  57. Hatahet F, Nguyen VD, Salo K, Ruddock L (2010) Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microb Cell Factories 9:67

    Google Scholar 

  58. Markwardt ML, Kremers G, Kraft CA, Ray K, Cranfill PJC, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA (2011) An improved Cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS ONE 6:e17896

    Article  CAS  Google Scholar 

  59. Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262:1744

    Article  CAS  Google Scholar 

  60. Xiong S, Wang YF, Ren XR, Li B, Zhang MY, Luo Y, Zhang L, Xie QL, Su KY (2005) Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its "oxidizing" mutant. World J Gastroenterol 11:1077

    CAS  Google Scholar 

  61. Bilitewski U (2006) Protein-sensing assay formats and devices. Anal Chim Acta 568:232

    Article  CAS  Google Scholar 

  62. Wong LS, Khan F, Micklefield J (2009) Selective covalent protein immobilization: strategies and applications. Chem Rev 109:4025

    Article  CAS  Google Scholar 

  63. Kwon Y, Coleman MA, Camarero JA (2006) Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed 45:1726

    Article  CAS  Google Scholar 

  64. Kufer SK, Dietz H, Albrecht C, Blank K, Kardinal A, Rief M, Gaub HE (2005) Covalent immobilization of recombinant fusion proteins with hAGT for single molecule force spectroscopy. Eur Biophys J 35:72

    Article  CAS  Google Scholar 

  65. Yin J, Liu F, Li X, Walsh CT (2004) Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 126:7754

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by LASKEMO National Graduate Programme, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobin George Abraham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, B.G., Santala, V., Tkachenko, N.V. et al. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level. Anal Bioanal Chem 406, 7195–7204 (2014). https://doi.org/10.1007/s00216-014-8165-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8165-1

Keywords

Navigation