Skip to main content
Log in

Development of a monoclonal antibody-based, congener-specific and solvent-tolerable direct enzyme-linked immunosorbent assay for the detection of 2,2′,4,4′-tetrabromodiphenyl ether in environmental samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive direct enzyme-linked immunosorbent assay (ELISA) for the specific detection of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in environmental samples was developed. A hapten mimicking BDE-47 was synthesized by introducing a butyric acid spacer into 5-hydroxy-BDE-47 and coupled to keyhole limpet hemocyanin to form an immunogen for the production of monoclonal antibodies (Mabs) against BDE-47. The most sensitive direct ELISA was formatted with a Mab, designated as 4F2, in combination with 5-(2,4-dibromophenoxy)pentanoic acid peroxidase as a tracer. The inhibition half-maximum concentrations and limit of detection of BDE-47 in phosphate buffered saline with 25% DMSO were 1.4 ± 0.05 and 0.1 ng mL−1, respectively. Cross-reactivity values of the ELISA with the tested BDE congeners and metabolites were ≤5.8%. This assay was used to determine BDE-47 in soil, sediment and house dust samples after ultrasonic extraction, simple cleanup and concentration steps. The average recoveries, repeatabilities (intraday extractions and analyses), and intra-laboratory reproducibilities (interday extractions and analyses) were in a range of 92–126%, 8–19% and 9–25%, respectively. Applied to 44 real samples, the results of this assay displayed a statistically significant correlation with those of a gas chromatography–mass spectrometry method (R 2 = 0.79-0.85), indicating this ELISA is a suitable tool for environmental analyses of BDE-47.

Direct competitive ELISA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ad hoc working group on pentabromodiphenyl ether under the Persistent Organic Pollutants Review Committee of the Stockholm Convention, United Nations Environment Programme, August 2007

  2. de Wit CA (2002) Chemosphere 46:583–624

    Article  Google Scholar 

  3. EEC, Directive 2003/11/EC of the European Parliament and of the Council of 6 February 2003 amending for the 24th time Council directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (pentabromodiphenyl ether and octabromodiphenyl ether), Official Journal L042, 15/02/2003

  4. California State Assembly, Assembly Bill No. 302. Sacramento, C.A.: California State Assembly, 2003

  5. European Court of Justice, Cases C-14/06 and C-295/06, Judgement of the Court, 1 April 2008, Directive 2002/95/EC and Commission Decision 2005/717/EC, 2008

  6. Hites RA (2004) Environ Sci Technol 38:945–956

    Article  CAS  Google Scholar 

  7. Zegers BN, Lewis WE, Booij K, Smittenberg RH, Boer W, de Boer J, Boon JP (2003) Environ Sci Technol 37:3803–3807

    Article  CAS  Google Scholar 

  8. Lacorte S, Guillamon M (2008) Chemosphere 73:70–75

    Article  CAS  Google Scholar 

  9. Thorenz UR, Musa Bandowe BA, Sobocka J, Wilcke W (2010) Environ Pollut 158:2208–2217

    Article  CAS  Google Scholar 

  10. Losada S, Parera J, Abalos M, Abad E, Santos FJ, Galceran MT (2010) Anal Chim Acta 678:73–81

    Article  CAS  Google Scholar 

  11. Lacorte S, Ikonomou MG, Fischer M (2010) J Chromatogr A 1217:337–347

    Article  CAS  Google Scholar 

  12. Gómara B, Herrero L, Bordajandi LR, González MJ (2006) Rapid Commun Mass Spectrom 20:69–74

    Article  Google Scholar 

  13. Wang D, Li QX (2010) Mass Spectrom Rev 29:737–775

    Article  CAS  Google Scholar 

  14. Sánchez-Brunete C, Miguel E, Tadeo JL (2006) Talanta 70:1051–1056

    Article  Google Scholar 

  15. Tadeo JL, Sánchez-Brunete C, Miguel E (2009) Talanta 78:138–143

    Article  CAS  Google Scholar 

  16. Ahn K-C, Gee SJ, Kim H-J, Nichkova M, Lee NA, Hammock BD (2007) ACS Symp Ser 966:138–154

    Article  CAS  Google Scholar 

  17. Chiu Y-W, Carlson RE, Marcus KL, Karu AE (1995) Anal Chem 67:3829–3839

    Article  CAS  Google Scholar 

  18. Glass TR, Ohmura N, Saiki H, Sawadaishi K, Kataoka C, Takagi Y, Ohiwa T (2004) Anal Chim Acta 517:161–168

    Article  CAS  Google Scholar 

  19. Van Emon JM, Chuang JC, Lordo RA, Schrock ME, Nichkova M, Gee SJ, Hammock BD (2008) Chemosphere 72:95–103

    Article  Google Scholar 

  20. Matsui K, Kawaji I, Utsumi Y, Ukita Y, Asano T, Takeo M, Kato D, Negoro S (2007) J Biosci Bioeng 104:347–350

    Article  CAS  Google Scholar 

  21. Shelver WL, Keum Y-S, Kim H-J, Rutherford D, Hakk HH, Bergman Å, Li QX (2005) J Agric Food Chem 53:3840–3847

    Article  CAS  Google Scholar 

  22. Shelver WL, Parrotta CD, Slawecki R, Li QX, Ikonomou MG, Barcelo D, Lacorte S, Rubio FM (2008) Chemosphere 73:S18–S23

    Article  CAS  Google Scholar 

  23. Ahn K-C, Gee SJ, Tsai H-J, Bennett D, Nishioka MG, Blum A, Fishman E, Hammock BD (2009) Environ Sci Technol 43:7784–7790

    Article  CAS  Google Scholar 

  24. Xu T, Cho I-K, Wang D, Rubio FM, Shelver WL, Gasc AME, Li J, Li QX (2009) Environ Pollut 157:417–422

    Article  CAS  Google Scholar 

  25. Kim H-J, Rossotti MA, Ahn K-C, González-Sapienza GG, Gee SJ, Musker R, Hammock BD (2010) Anal Biochem 401:38–46

    Article  CAS  Google Scholar 

  26. Marsh G, Stenutz R, Bergman Å (2003) Eur J Org Chem 14:2566–2576

    Article  Google Scholar 

  27. McAdam DP, Hill AS, Beasley HL, Skerritt JH (1992) J Agric Food Chem 40:1466–1470

    Article  CAS  Google Scholar 

  28. Fránek M, Deng A, Kolár V, Socha J (2001) Anal Chim Acta 444:131–142

    Article  Google Scholar 

  29. Gaur PK, Lau HP, Pestka JJ, Chu FS (1981) Appl Enuiron Microbiol 41:478–482

    CAS  Google Scholar 

  30. Webster T, Vieira V, Schecter A (2005) Organohalog Compd 67:505–508

    Google Scholar 

  31. Allen JG, McClean MD, Stapleton HM, Nelson JW, Webster TF (2007) Environ Sci Technol 41:4574–4579

    Article  CAS  Google Scholar 

  32. Lorber M (2008) J Expo Sci Environ Epidemiol 18:2–19

    Article  CAS  Google Scholar 

  33. Brun EM, Garcés-García M, Puchades R, Maquieira A (2004) J Immunol Methods 295:21–35

    Article  CAS  Google Scholar 

  34. ISO (1994) 5725–2: Accuracy (truness and precision) of measurement methods and results. Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method

  35. Alcocka RE, Sweetmanb AJ, Prevedourosb K, Jones KC (2003) Environ Int 29:691–698

    Article  Google Scholar 

  36. Meeker JD, Johnson PI, Camann D, Hauser R (2009) Sci Total Environ 407:3425–3429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural and Science Foundation of China (No. 20977111) and the Chinese University Scientific Fund (No. 2009TD15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 60.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, H., Shelver, W.L. et al. Development of a monoclonal antibody-based, congener-specific and solvent-tolerable direct enzyme-linked immunosorbent assay for the detection of 2,2′,4,4′-tetrabromodiphenyl ether in environmental samples. Anal Bioanal Chem 401, 2249–2258 (2011). https://doi.org/10.1007/s00216-011-5283-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5283-x

Keywords

Navigation