Skip to main content
Log in

On the \(L^{r}\) Hodge theory in complete non compact Riemannian manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

A Correction to this article was published on 12 February 2019

This article has been updated

Abstract

We study solutions for the Hodge laplace equation \(\Delta u=\omega \) on p forms with \(\displaystyle L^{r}\) estimates for \(\displaystyle r>1.\) Our main hypothesis is that \(\Delta \) has a spectral gap in \(\displaystyle L^{2}.\) We use this to get non classical \(\displaystyle L^{r}\) Hodge decomposition theorems. An interesting feature is that to prove these decompositions we never use the boundedness of the Riesz transforms in \(\displaystyle L^{s}.\) These results are based on a generalisation of the Raising Steps Method to complete non compact Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 12 February 2019

    Our aim is to correct the proofs of Lemma 5.2 and Lemma 5.3

References

  1. Amar, E.: The raising steps method. Application to the \(\bar{\partial }\) equation in Stein manifolds. J. Geom. Anal. 26(2), 898–913 (2016). doi:10.1007/s12220-015-9576-8

  2. Amar, E.: The raising steps method. Applications to the \({L}^{r}\) Hodge theory in a compact Riemannian manifold. HAL-01158323 (2015)

  3. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété Riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)

  4. Bergh, J., LöfStröm, J.: Interpolation Spaces, vol.223. Grundlehren der mathematischen Wissenchaften (1976)

  5. Bueler, E.L.: The heat kernel weigted Hodge Laplacian on non compact manifolds. Trans. Am. Math. Soc. 351(2), 683–713 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donnelly, H.: The diffential form spectrum of hyperbolic spaces. Manuscr. Math. 33, 365–385 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  8. Gaffney, M.P.: Hilbert space methods in the theory of harmonic integrals. Am. Math. Soc. 78, 426–444 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations. Grundlheren der mathematischen Wissenschaften, vol. 224. Springer, Berlin (1998)

  10. Gromov, M.: Kähler hyperbolicity and \({L^2}\)-Hodge theory. J. Differ. Geom. 33, 253–320 (1991)

    Article  MATH  Google Scholar 

  11. Guneysu, B., Pigola, S.: Calderon-Zygmund inequality and Sobolev spaces on noncompact Riemannian manifolds. Adv. Math. 281, 353–393 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics, vol. 1635. Springer, Berlin (1996)

  13. Hebey, E., Herzlich, M.: Harmonic coordinates, harmonic radius and convergence of Riemannian manifolds. Rend. Mat. Appl. (7) 17(4), 569–605 (1997)

  14. Kodaira, K.: Harmonic fields in Riemannian manifolds (generalized potential theory). Ann. Math. 50, 587–665 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, X.-D.: On the strong \({L}^p\)-Hodge decomposition over complete riemannian manifolds. J. Funct. Anal. 257, 3617–3646 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, X.D.: \({L}_p\)-estimates and existence theorems for the \(\bar{\partial }\)-operator on complete kähler manifolds. Adv. Math. 224, 620–647 (2010)

  17. Li, X.D.: Riesz transforms on forms and \({L}_p\)-hodge decomposition on complete riemannian manifolds. Rev. Mat. Iberoam. 26(2), 481–528 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, X.D.: Sobolev inequalities on forms and \({L}_{p, q}\)-cohomology on complete riemannian manifolds. J. Geom. Anal. 20, 354–387 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lohoué, N.: L’équation de Poisson pour les formes différentielles sur un espace symétrique et ses applications. Bull. Sci. Math. 140, 11–57 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lott, J.: The zero-in-the-spectrum question. Enseign. Math. 42, 341–376 (1996)

    MATH  MathSciNet  Google Scholar 

  21. Scott, C.: \({L}^p\) theory of differential forms on manifolds. Trans. Am. Math. Soc. 347(6), 2075–2096 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Taylor, M.E. Differential Geometry. Course of the University of North Carolina. www.unc.edu/math/Faculty/met/diffg.html

  23. Varopoulos, N.: Small time gaussian estimates of heat diffusion kernels. Bull. Sci. Math. 113, 253–277 (1989)

    MATH  MathSciNet  Google Scholar 

  24. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Amar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, E. On the \(L^{r}\) Hodge theory in complete non compact Riemannian manifolds. Math. Z. 287, 751–795 (2017). https://doi.org/10.1007/s00209-017-1844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1844-9

Keywords

Navigation