Skip to main content
Log in

Harnack inequality for fractional sub-Laplacians in Carnot groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we prove an invariant Harnack inequality on Carnot–Carathéodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an “abstract” formulation of a technique recently introduced by Caffarelli and Silvestre. In addition, we write explicitly the Poisson kernel for a class of degenerate subelliptic equations in product-type Carnot groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus. Volume 116 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  2. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Studia Math. 123(1), 43–80 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  4. Bony, J.-M., Courrège, P., Priouret, P.: Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble), 18(fasc. 2):369–521 (1969), 1968

  5. Bourbaki, N.: Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie. Actualités Sci. Ind. No. 1285. Hermann, Paris (1960)

  6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Calderón, A.-P.: Inequalities for the maximal function relative to a metric. Studia Math. 57(3), 297–306 (1976)

    MATH  MathSciNet  Google Scholar 

  9. Capogna, L., Danielli, D., Garofalo, N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Commun. Anal. Geom. 2(2), 203–215 (1994)

    MATH  MathSciNet  Google Scholar 

  10. Chang, S.-Y.A., del Mar González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Courrège, P.: Sur la forme intégro-différentielle des opérateurs de \(\mathbf{C}^\infty _k\) dans \(\mathbf{C}\) satisfaisant au principe du maximum. In Séminaire de Théorie du Potentiel, dirigé par M. Brelot, G. Choquet et J. Deny, 1965/66, Tome 10, No. 1, pages 1–38. Secrétariat mathématique, Paris, 1967

  12. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferrari, F., Franchi, B.: A local doubling formula for the harmonic measure associated with subelliptic operators and applications. Communs. Part. Differ. Equ. 28(1–2), 1–60 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13(2), 161–207 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups, Volume 28 of Mathematical Notes. Princeton University Press, Princeton, NJ (1982)

    Google Scholar 

  16. Franchi, B., Lanconelli, E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(4), 523–541 (1983)

    MATH  MathSciNet  Google Scholar 

  17. Franchi, B., Serapioni, R.: Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14(4), 527–568 (1987)

    MATH  MathSciNet  Google Scholar 

  18. Franchi, B., Serapioni, R., Cassano, F.S.: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J. Math. 22(4), 859–890 (1996)

    MATH  MathSciNet  Google Scholar 

  19. Franchi, B., Serapioni, R., Cassano, F.S.: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13(3), 421–466 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Franchi, B., Serapioni, R., Cassano, F.S.: Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups. Commun. Anal. Geom. 11(5), 909–944 (2003)

    Article  MATH  Google Scholar 

  21. Frank, R.L., del Mar González, M., Monticelli, D.D., Tan, J.: An extension problem for the cr fractional laplacian. arXiv:1312.3381 (2013)

  22. Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980. Corrected and enlarged edition edited by Alan Jeffrey, Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin], Translated from the Russian

  24. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hunt, G.A.: Semi-groups of measures on Lie groups. Trans. Am. Math. Soc. 81, 264–293 (1956)

    Article  MATH  Google Scholar 

  26. Niels, J.: Pseudo differential operators and Markov processes: Markov processes and applications, vol. 3. Imperial College Press, London (2005)

    Google Scholar 

  27. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften (1972), Band 180

  28. Lévy, P.: Sur les intégrales dont les éléments sont des variables aléatoires indépendantes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 3(3–4), 337–366 (1934)

    MathSciNet  Google Scholar 

  29. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften (1972), Band 181

  30. Lu, G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications. Rev. Mat. Iberoamericana 8(3), 367–439 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Magnani, V.: Differentiability and area formula on stratified Lie groups. Houston J. Math. 27(2), 297–323 (2001)

    MATH  MathSciNet  Google Scholar 

  32. Masuda, K.: Anti-locality of the one-half power of elliptic differential operators. Publ. Res. Inst. Math. Sci. 8, 207–210 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  33. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III (1993)

  36. Stinga, P.R., Torrea, J.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Part. Differ. Equ. 35(11), 2092–2122 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stinga, P.R., Zhang, C.: Harnack’s inequality for fractional nonlocal equations. Discrete Contin. Dyn. Syst. 33(7), 3153–3170 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Ferrari.

Additional information

The authors are supported by MURST, Italy, and by University of Bologna, Italy, funds for selected research topics and by EC Project CG-DICE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, F., Franchi, B. Harnack inequality for fractional sub-Laplacians in Carnot groups. Math. Z. 279, 435–458 (2015). https://doi.org/10.1007/s00209-014-1376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1376-5

Keywords

Mathematics Subject Classification

Navigation