Skip to main content
Log in

The fibred density property and the automorphism group of the spectral ball

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We generalize the notion of the density property for complex manifolds to holomorphic fibrations, and introduce the notion of the fibred density property. We prove that the natural fibration of the spectral ball over the symmetrized polydisc enjoys the fibred density property and describe the automorphism group of the spectral ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E., Raţiu, T.: Manifolds, Tensor Analysis, and Applications, Global Analysis Pure and Applied: Series B. Addison-Wesley Publishing Co., Reading (1983)

    MATH  Google Scholar 

  2. Andersén, E.: Volume-preserving automorphisms of \({ C}^n\). Complex Var. Theory Appl. 14(1–4), 223–235 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Andersén, E., Lempert, L.: On the group of holomorphic automorphisms of \({ C}^n\). Invent. Math. 110(2), 371–388 (1992). doi:10.1007/BF01231337

    Article  MathSciNet  MATH  Google Scholar 

  4. Baribeau, L., Ransford, T.: Non-linear spectrum-preserving maps. Bull. Lond. Math. Soc. 32(1), 8–14 (2000). doi:10.1112/S0024609399006426

    Article  MathSciNet  MATH  Google Scholar 

  5. Bercovici, H., Foias, C., Tannenbaum, A.: Spectral radius interpolation and robust control. In: Proceedings of the 28th IEEE Conference on Decision and Control, Vol. 1–3. IEEE, New York (1989), pp. 916–917

  6. Bercovici, H., Foias, C., Tannenbaum, A.: A spectral commutant lifting theorem. Trans. Am. Math. Soc. 325(2), 741–763 (1991). doi:10.2307/2001646

    Article  MathSciNet  MATH  Google Scholar 

  7. Dixmier, J.: Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simples. J. Rein. Angew. Math. 309, 183–190 (1979). doi:10.1515/crll.1979.309.183

    MATH  Google Scholar 

  8. Donzelli, F., Dvorsky, A., Kaliman, S.: Algebraic density property of homogeneous spaces. Transform. Groups 15(3), 551–576 (2010). doi:10.1007/s00031-010-9091-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Forstnerič, F.: Stein Manifolds and Holomorphic Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., Vol. 56. Springer, Heidelberg (2011)

  10. Forstneric, F., Rosay, J.-P.: Erratum: Approximation of biholomorphic mappings by automorphisms of C\(^{n}\). Invent. Math. 118(3), 573–574 (1994). doi:10.1007/BF01231544

    Article  MathSciNet  MATH  Google Scholar 

  11. Forstneric, F., Rosay, J.-P.: Approximation of biholomorphic mappings by automorphisms of C\(^{n}\). Invent. Math. 112(2), 323–349 (1993). doi:10.1007/BF01232438

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaliman, S., Kutzschebauch, F.: On the present state of the Andersén–Lempert theory. In: Affine Algebraic Geometry, CRM Proc. Lecture Notes, Vol. 54, Am. Math. Soc., Providence (2011), pp. 85–122

  13. Kaliman, S., Kutzschebauch, F.: On algebraic volume density property. Transform. Groups 21(2), 451–478 (2016). doi:10.1007/s00031-015-9360-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Kutzschebauch, F.: Andersén–Lempert-theory with parameters: a representation theoretic point of view. J. Algebra Appl. 4(3), 325–340 (2005). doi:10.1142/S0219498805001216

    Article  MathSciNet  MATH  Google Scholar 

  15. Kosiński, L.: The group of automorphisms of the spectral ball. Proc. Am. Math. Soc. 140(6), 2029–2031 (2012). doi:10.1090/S0002-9939-2011-11064-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Kosiński, L.: Structure of the group of automorphisms of the spectral \(2\)-ball. Collect. Math. 64(2), 175–184 (2013). doi:10.1007/s13348-012-0079-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kraft, H.: Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig (1984)

    Book  Google Scholar 

  19. Pietsch, A.: Nuclear Locally Convex Spaces. Springer, New York (1972)

    Book  MATH  Google Scholar 

  20. Ransford, T.J., White, M.C.: Holomorphic self-maps of the spectral unit ball. Bull. Lond. Math. Soc. 23(3), 256–262 (1991). doi:10.1112/blms/23.3.256

    Article  MathSciNet  MATH  Google Scholar 

  21. Rostand, J.: On the automorphisms of the spectral unit ball. Stud. Math. 155(3), 207–230 (2003). doi:10.4064/sm155-3-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Thomas, P.J.: A local form for the automorphisms of the spectral unit ball. Collect. Math. 59(3), 321–324 (2008). doi:10.1007/BF03191190

    Article  MathSciNet  MATH  Google Scholar 

  23. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Dover Publications, Inc., Mineola (2006)

    MATH  Google Scholar 

  24. Varolin, D.: A general notion of shears, and applications. Mich. Math. J. 46(3), 533–553 (1999). doi:10.1307/mmj/1030132478

    Article  MathSciNet  MATH  Google Scholar 

  25. Varolin, D.: The density property for complex manifolds and geometric structures. II. Int. J. Math. 11(6), 837–847 (2000). doi:10.1142/S0129167X00000404

    Article  MathSciNet  MATH  Google Scholar 

  26. Varolin, D.: The density property for complex manifolds and geometric structures. J. Geom. Anal. 11(1), 135–160 (2001). doi:10.1007/BF02921959

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for recommendations to improve the presentation and for pointing out some problems in the first version of this article. Moreover they would like to thank A. Liendo, P.-M. Poloni, S. Maubach, A. van den Essen, H. Derksen and A. Nowicki for discussions about determining the dimension growth of the kernel of a homogeneous derivation and finally again the referee for the contribution of the Proposition 5.2 and its proof which simplified the calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael B. Andrist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrist, R.B., Kutzschebauch, F. The fibred density property and the automorphism group of the spectral ball. Math. Ann. 370, 917–936 (2018). https://doi.org/10.1007/s00208-017-1520-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1520-8

Mathematics Subject Classification

Navigation