Skip to main content
Log in

Fine structure of connectedness loci

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study distributions of the harmonic and Lebesgue measures on the boundary of the connectedness locus \(\mathcal{M}_{d}\) for uni-critical polynomials \(z^{d}+c\) and dynamical properties which are typical with respect to the harmonic measure. One result is a conformal similarity between \(\mathcal{M}_{d}\) and the corresponding Julia set for almost every point of \(\mathcal{M}_{d}\) with respect to the harmonic measure. It is also shown that the harmonic measure is supported on Lebesgue density points of the complement of \(\mathcal{M}_{d}\) which are not accessible from outside within John angles and at which the boundary of \(\mathcal{M}_{d}\) ‘spirals’ infinitely often in both directions. In the case of quadratic polynomials, we prove that every parameter c from the boundary of the Mandelbrot set \(\mathcal{M}\) that is recurrent under iterates of \(z^{2}+c\) but not infinitely tunable is a Lebesgue weak density point of the complement of \(\mathcal{M}\). A direct consequence of our theory is the Yoccoz local connectivity theorem. A new technical ingredient in the paper is the method of “amplification” which is based on promoting the small scale geometry of the parameter space at a typical point in the sense of harmonic measure to uniform geometry of the corresponding Julia set. The pointwise conformality of the similarity map is derived through inducing techniques and a classical TWB-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Avila, A., Lyubich, M., Weixiao, S.: Parapuzzle of the Multibrot set and typical dynamics of unimodal maps. J. Eur. Math. Soc. 13, 27–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedicks, M., Carleson, L.: On iterations of \(1-ax^2\) on \((-1,1)\). Ann. Math. 122(2), 1–25 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedicks, M., Graczyk, J.: Mandelbrot set along smooth traversing curves (2014) (manuscript)

  4. Binder, I., Makarov, N., Smirnov, S.: Harmonic measure and polynomial Julia sets. Duke Math. J. 117(2), 343–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat. 6, 103–144 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bers, L., Royden, H.L.: Families of holomorphic injections. Acta Math. 157, 259–286 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buff, X., Chéritat, A.: Quadratic Julia sets with positive area. Ann. Math. 176(2), 673–746 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carleson, L., Gamelin, T.: Complex Dynamics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  9. Carleson, L., Jones, P.: On coefficient problems for univalent functions and conformal dimension. Duke Math. J. 66(2), 169–206 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carleson, L., Jones, P., Yoccoz, J.-C.: Julia and John. Bol. Soc. Bras. Mat. 25, 1–30 (1994)

  11. Douady, A.: Systemès Dynamiques Holomorphes. Astérisque 105, 39–63 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Douady, A., Hubbard, J.H.: Étude Dynamique des polynômes quadratiques complexes. Publications Mathématiques d’Orsay no. 84-02 and 85-04 (1984)

  13. Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18, 287–343 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fatou, P.: Sur les fonctions holomorphes et bornée à l’intérieur d’un cercle. Bull. Soc. Math. Fr. 51, 191–202 (1922)

  15. Finn, R., Serrin, J.: On the Hölder continuity of quasi-conformal and elliptic mappings. Trans. Am. Math. Soc. 89, 1–15 (1958)

    MATH  Google Scholar 

  16. Gehring, F., Lehto, O.: On the total differentiability of functions of a complex variable. Ann. Acad. Sci. Fenn. Ser. A I Math. 272, 1–9 (1959)

  17. Graczyk, J., Smirnov, S.: Collet, Eckmann, & Hölder. Invent. Math. 133, 69–96 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graczyk, J., Światek, G.: The real Fatou conjecture, Ann. Math Stud. Princeton University Press, Princeton (1998)

    MATH  Google Scholar 

  19. Graczyk, J., Świa̧tek, G.: Harmonic measure and expansion on the boundary of the connectedness locus. Invent. Math. 142(3), 605–629 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Graczyk, J., Świa̧tek, G.: Asymptotically conformal similarity between Julia and Mandelbrot sets. C. R. Math. Acad. Sci. Paris 349(5–6), 309–314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Graczyk, J., Świa̧tek, G.: Asymptotic porosity of plannar harmonic measure. Arkiv för Matematik 51, 53–69 (2013)

    Article  MathSciNet  Google Scholar 

  22. Graczyk, J., Świa̧tek, G.: Lyapunov exponents and harmonic measure on the boundary of Connectedness Locus. Int. Math. Res. Not. 16, 7357–7364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gutlyanskiĭ, V., Martio, O.: Conformality of a quasiconformal mapping at a point. J. d’Analyse Math. 91, 179–192 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hubbard, J.: Local connnectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, : 467–511. Publish or Perish, Houston, TX 1991) (1993)

  25. Jones, P.W., Wolff, T.: Hausdorff dimension of harmonic measures in the plane. Acta Math. 161, 131–144 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones, P.W.: On scaling properties of harmonic measure, perspectives in analysis: essays in Honor of Lennart Carlesons 75th Birthday (Mathematical Physics Studies), pp. 73–81 (2006)

  27. Lehto, O., Virtanen, K.I.: Quasiconformal mappings in the plane, 2nd edn. Springer, New York (1973)

    Book  MATH  Google Scholar 

  28. Makarov, N.: Distortion of boundary sets under conformal mappings. Proc. Lond. Math. Soc. 51, 369–384 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Makarov, N.: Fine structure of harmonic measure. Algebra i Analiz 10(2), 1–62 (1998)

    MathSciNet  MATH  Google Scholar 

  30. McMullen, C.: Self-similarity of Siegel disks and the Hausdorff dimension of Julia sets. Acta Math. 180(2), 247292 (1988)

    MathSciNet  Google Scholar 

  31. McMullen, C.: Renormalization and 3-Manifolds which Fiber over the Circle. Annals of Math Studies, vol. 142. Princeton University Press, Princeton (1996)

    Google Scholar 

  32. Mañé, R., Sad, P., Sullivan, D.: On the dynamics of rational maps. Ann. Sci. Ec. Norm. Sup. 16, 193–217 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pommerenke, Ch.: Boundary behavior of conformal maps. Springer, New York (1992)

    Book  MATH  Google Scholar 

  34. Przytycki, F., Urbanski, M., Zdunik, A.: Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. Ann. Math. 130, 1–40 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rivera-Latelier, J.: On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets. Fund. Math. 170, 287–317 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shishikura, M.: The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. Math. 147, 225–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sibony, N.: Iterération de polynômes et fonction de Green (1981) (manuscript)

  38. Slodkowski, Z.: Extensions of holomorphic motions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22(2), 185–210 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Smirnov, S.: Symbolic dynamics and Collet–Eckmann conditions. Int. Math. Res. Not. 7, 333–351 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Świa̧tek, G.: Induced hyperbolicity for one-dimensional maps. In: Proceedings of the International Congress of Mathematicians, vol. II (Berlin, 1998), Doc. Math., Extra vol. II, pp. 857–866 (1988)

  41. Tan, L.: Similarity between the Mandelbrot set and Julia sets. Commun. Math. Phys. 134(3), 587–617 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yoccoz, J-C.: unpublished manuscripts, see also [26]

  43. Zdunik, A.: Harmonic measure versus Hausdorff measures on repellers for holomorphic maps. Trans. Am. Math. Soc. 326(2), 633–652 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Jacek Graczyk would like to thank Lennart Carleson for many discussions about various aspects of harmonic measure and dynamics. Michael Benedicks and Nessim Sibony made many pertinent comments about analytical aspect of the paper. The second author thanks University of Paris at Orsay for its hospitality while this paper was worked on. Warm hospitality of Mittag-Leffler Institute is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Graczyk.

Additional information

Communicated by Ngaiming Mok.

Supported in part by a Grant 2012/05/B/ST1/00551 funded by Narodowe Centrum Nauki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graczyk, J., Świa̧tek, G. Fine structure of connectedness loci. Math. Ann. 369, 49–108 (2017). https://doi.org/10.1007/s00208-016-1446-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1446-6

Navigation