Skip to main content
Log in

On generalized category \(\mathcal {O}\) for a quiver variety

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we give a method for relating the generalized category \(\mathcal {O}\) defined by the author and collaborators to explicit finitely presented algebras, and apply this to quiver varieties. This allows us to describe combinatorially not just the structure of these category \(\mathcal {O}\)’s but also how certain interesting families of derived equivalences, the shuffling and twisting functors, act on them. In the case of Nakajima quiver varieties, the algebras that appear are weighted KLR algebras and their steadied quotients, defined by the author in earlier work. In particular, these give a geometric construction of canonical bases for simple representations, tensor products and Fock spaces. If the \(\mathbb {C}^{*}\)-action used to define the category \(\mathcal {O}\) is a “tensor product action” in the sense of Nakajima, then we arrive at the unique categorifications of tensor products; in particular, we obtain a geometric description of the braid group actions used by the author in defining categorifications of Reshetikhin–Turaev invariants. Similarly, in affine type A, an arbitrary action results in the diagrammatic algebra equivalent to blocks of category \(\mathcal {O}\) for cyclotomic Cherednik algebras. This approach also allows us to show that these categories are Koszul and understand their Koszul duals; in particular, we can show that categorifications of minuscule tensor products in types ADE are Koszul. In the affine case, this shows that our category \(\mathcal {O}\)’s are Koszul and their Koszul duals are given by category \(\mathcal {O}\)’s with rank-level dual dimension data, and that this duality switches shuffling and twisting functors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Quasi-equivalence is the correct notion of equivalence for dg-categories. A dg-functor F is a quasi-equivalence if it induces an equivalence on homotopy categories, and induces a quasi-isomorphism on morphism complexes, that is, it induces an isomorphism \(\mathrm{Ext}^i(M,N)\cong \mathrm{Ext}^i(F(M),F(N))\) for all M and N.

  2. This addition structure is a \(\mathbb {Q}\)-form K of the perverse sheaf \(\mathrm{DR}(\mathcal {M})\), compatible weight filtrations of \(\mathcal {M}\) and K, and good filtration on \(\mathcal {M}\).

  3. If \(\Gamma \) does have loops, we obtain the generalization of \(\Lambda \) defined by Bozec [10]; as discussed before, this action does not satisfy all our hypotheses.

References

  1. Achar, J.: Equivariant mixed Hodge modules. Lecture notes

  2. Bernstein, J.: Algebraic theory of D-modules (preprint)

  3. Baranovsky, V., Ginzburg, V. (personal communication)

  4. Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in algebraic context. Mosc. Math. J. 4(3), 559–592, 782 (2004)

  5. Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases. Quantum groups. In: Contemp. Math., vol. 433, pp. 13–88. Amer. Math. Soc., Providence (2007)

  6. Bezrukavnikov, N., Losev, N.: Etingof conjecture for quantized quiver varieties. arXiv:1309.1716

  7. Braden, T., Licata, A., Proudfoot, N., Webster, N.: Quantizations of conical symplectic resolutions II: category \({\cal O}\). arXiv:1407.0964

  8. Braden, T., Licata, A., Proudfoot, N., Webster, B.: Gale duality and Koszul duality. Adv. Math. 225(4), 2002–2049 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Braden, T., Licata, A., Proudfoot, N., Webster, B.: Hypertoric category \({\cal O}\). Adv. Math. 231(3–4), 1487–1545 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bozec, J.: Quivers with loops and Lagrangian subvarieties. arXiv:1311.5396

  11. Bozec, T.: Quivers with loops and perverse sheaves. arXiv:1401.5302

  12. Braden, T., Proudfoot, N.J., Webster, B.: Quantizations of conical symplectic resolutions I: local and global structure. arXiv:1208.3863

  13. Cautis, S., Dodd, C., Kamnitzer, J.: Associated graded of Hodge modules and categorical \({\mathfrak{sl}}_2\) actions. arXiv:1603.07402

  14. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser Boston Inc., Boston (1997)

    MATH  Google Scholar 

  15. Cautis, S., Kamnitzer, J.: Braiding via geometric Lie algebra actions. Compos. Math. 148(2), 464–506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\)-categorification. Ann. Math. (2) 167(1), 245–298 (2008)

  17. Deng, B., Du, J., Fu, Q.: A double Hall algebra approach to affine quantum Schur–Weyl theory. In: London Mathematical Society Lecture Note Series, vol. 401. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  18. Drinfeld, V.: DG quotients of DG categories. J. Algebra 272(2), 643–691 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elias, B., Khovanov, M.: Diagrammatics for Soergel categories. Int. J. Math. Math. Sci. 58, Art. ID 978635 (2010)

  20. Etingof, P.: Symplectic reflection algebras and affine Lie algebras. Mosc. Math. J. 12(3), 543–565, 668–669 (2012)

  21. Elias, B., Willamson, G.: Soergel Calculus. arXiv:1309.0865

  22. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category \({\cal O}\) for rational Cherednik algebras. Invent. Math. 154(3), 617–651 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hubery, A.: Three presentations of the Hopf algebra \({\cal U} _{v} (\widehat{{\mathfrak{gl}}}_n)\) (2010). (preprint)

  24. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kashiwara, M., Rouquier, R.: Microlocalization of rational Cherednik algebras. Duke Math. J. 144(3), 525–573 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kashiwara, M., Saito, Y.: Geometric construction of crystal bases. Duke Math. J. 89(1), 9–36 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kashiwara, M., Schapira, P.: Deformation quantization modules. Astérisque (2012) 345, xii+147

  28. Kamnitzer, J., Webster, B., Weekes, A., Yacobi, O.: Yangians and quantizations of slices in the affine Grassmannian. arXiv:1209.0349

  29. Li, Y.: Tensor product varieties, perverse sheaves, and stability conditions. Selecta Math. (N.S.) 20(2), 359–401 (2014)

  30. Losev, I.: On categories \({\cal O}\) for quantized symplectic resolutions. arXiv:1502.00595

  31. Losev, I.: Isomorphisms of quantizations via quantization of resolutions. Adv. Math. 231, 1216–1270 (2012)

  32. Losev, I.: Highest weight \({\mathfrak{sl}}_2\)-categorifications I: crystals. Math. Z. 274(3–4), 1231–1247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. Am. Math. Soc. 4(2), 365–421 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maffei, A.: A remark on quiver varieties and Weyl groups. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(3), 649–686 (2002)

  35. Maffei, A.: Quiver varieties of type A. Comment. Math. Helv. 80(1), 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. McGerty, K., Nevins, T.: Morse decomposition for D-module categories on stacks. arXiv:1402.7365

  37. McGerty, K., Nevins, T.: Derived equivalence for quantum symplectic resolutions. Selecta Math. (N.S.) 20(2), 675–717 (2014)

  38. Mazorchuk, V., Ovsienko, S., Stroppel, C.: Quadratic duals, Koszul dual functors, and applications. Trans. Am. Math. Soc. 361(3), 1129–1172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mirković, I., Vybornov, M.: Quiver varieties and Beilinson–Drinfeld Grassmannians of type A (2007). arXiv:0712.4160

  40. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras. Duke Math. J. 76(2), 365–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nakajima, H.: Quiver varieties and Kac–Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nakajima, H.: Quiver varieties and tensor products. Invent. Math. 146(2), 399–449 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nakajima, H., Yoshioka, K.: Lectures on instanton counting, Algebraic structures and moduli spaces. In: CRM Proc. Lecture Notes, vol. 38, pp. 31–101. Amer. Math. Soc., Providence (2004)

  44. Proudfoot, N.: A survey of hypertoric geometry and topology. In: Toric Topology, Contemp. Math., vol. 460, pp. 323–338. Amer. Math. Soc., Providence (2008)

  45. Rouquier, R.: 2-Kac–Moody algebras. arXiv:0812.5023

  46. Saito, M.: Mixed Hodge modules. Publ. Res. Inst. Math. Sci. 26(2), 221–333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Saito, Y.: Crystal bases and quiver varieties. Math. Ann. 324(4), 675–688 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sauter, J.: A survey on Springer theory. arXiv:1307.0973

  49. Sam, S.V., Tingley, P.: Combinatorial realizations of crystals via torus actions on quiver varieties. J. Algebr. Combin., 1–30 (2012)

  50. Stroppel, C., Webster, B.: Quiver Schur algebras and \(q\)-Fock space. arXiv:1110.1115

  51. Varagnolo, M., Vasserot, E.: Canonical bases and KLR-algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Webster, B.: A categorical action on quantized quiver varieties. arXiv:1208.5957

  53. Webster, B.: Knot invariants and higher representation theory. Memoirs Am. Math. Soc. (to appear). arXiv:1309.3796

  54. Webster, B.: Rouquier’s conjecture and diagrammatic algebra. arXiv:1306.0074

  55. Webster, B.: Weighted Khovanov–Lauda–Rouquier algebras. arXiv:1209.2463

  56. Webster, B.: Canonical bases and higher representation theory. Compos. Math. 151(1), 121–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Webster.

Additional information

Communicated by Denis Auroux.

Supported by the NSF under Grant DMS-1151473 and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, B. On generalized category \(\mathcal {O}\) for a quiver variety. Math. Ann. 368, 483–536 (2017). https://doi.org/10.1007/s00208-016-1438-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1438-6

Navigation