Skip to main content
Log in

Harnack inequality for degenerate and singular operators of p-Laplacian type on Riemannian manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study viscosity solutions to degenerate and singular elliptic equations of p-Laplacian type on Riemannian manifolds. The Krylov–Safonov type Harnack inequality for the p-Laplacian operators with \(1<p<\infty \) is established on the manifolds with Ricci curvature bounded from below based on ABP type estimates. We also prove the Harnack inequality for nonlinear p-Laplacian type operators assuming that a nonlinear perturbation of Ricci curvature is bounded below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (in Russian). Uchen. Zap. Leningrad. Gos. Univ. Math. Ser. 6, 3–35 (1939)

  2. Antonini, P., Mugnai, D., Pucci, P.: Singular elliptic inequalities on complete Riemannian manifolds. J. Math. Pures Appl. 87, 582–600 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argiolas, R., Charro, F., Peral, I.: On the Aleksandrov–Bakel’man–Pucci estimate for some elliptic and parabolic nonlinear operators. Arch. Ration. Mech. Anal. 202, 875–917 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azagra, D., Ferrera, J.: Regularization by sup–inf convolutions on Riemannian manifolds: an extension of Lasry–Lions theorem to manifolds of bounded curvature. J. Math. Anal. Appl. 423, 994–1024 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azagra, D., Ferrera, J., Sanz, B.: Viscosity solutions to second order partial differential equations on Riemannian manifolds. J. Differ. Equ. 245, 307–336 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bangert, V.: Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten. J. Reine Angew. Math. 307, 309–324 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Birindelli, I., Demengel F.: Comparison principle and Liouville type results for singular fully nonlinear operators. Ann. Fac. Sci. Toulouse Math (6) 13 (2), 261–287 (2004)

  8. Birindelli, I., Demengel, F.: The Dirichlet problem for singular fully nonlinear operators. Discret. Contin. Dyn. Syst. (Special vol.) 110–121 (2007)

  9. Bishop, R.L., Crittenden, R.J.: Geometry of Manifolds. Academic Press, New York (1964)

    MATH  Google Scholar 

  10. Cabré, X.: Nondivergent elliptic equations on manifolds with nonnegative curvature. Comm. Pure Appl. Math. 50, 623–665 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.A., Cabré, X.: Fully nonlinear elliptic equations, American mathematical society colloquium publications, vol. 43. American Mathematical Society, Providence (1995)

    Book  MATH  Google Scholar 

  12. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dávila, G., Felmer, P., Quaas, A.: Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations. Comptes Rend. Math. 347(19), 1165–1168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dávila, G., Felmer, P., Quaas, A.: Harnack inequality for singular fully nonlinear operators and some existence results. Calc. Var. Partial Differ. Equ. 39(3–4), 557–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, C., Spruck, J.: Motion of level sets by mean curvature. J. Differ. Geom. 33, 635–681 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Grigoryan, A.A.: The heat equation on noncompact Riemannian manifolds (Russian). Mat. Sb. 182(1), 55-87 (1991); Math. USSR-Sb. 72(1), 47–77 (1992)

  19. Holopainen, I.: Positive solutions of quasilinear elliptic equations on Riemannian manifolds. Proc. London Math. Soc. (3) 65, 651–672 (1992)

  20. Imbert, C.: Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations. J. Differ. Equ. 250(3), 1553–1574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Imbert, C., Silvestre, L.: Estimates on elliptic equations that hold only where the gradient is large. J Eur. Math. Soc. (to appear)

  22. Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs. Comm. Pure Appl. Math. 42(1), 15–45 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jensen, R.: The Maximum Principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Rat. Mech. Anal. 101, 1–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, S.: Harnack inequality for nondivergent elliptic operators on Riemannian manifolds. Pacific J. Math. 213, 281–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, S., Kim, S., Lee, K.-A.: Harnack inequality for nondivergent parabolic operators on Riemannian manifolds. Calc. Var. 49, 669–706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim, S., Lee, K.-A.: Parabolic Harnack inequality of viscosity solutions on Riemannian manifolds. J. Funct. Anal. 267, 2152–2198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kotschwar, B., Ni, L.: Local gradient estimates of \(p\)-flow, and an entropy formula. Ann. Sci. Éc. Norm. Supér. (4) 42 (1), 1–36 (2009)

  28. Mooney, C.: Harnack inequality for degenerate and singular elliptic equations with unbounded drift. J. Differ. Equ. 258(5), 1577–1591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rigoli, M., Salvatori, M., Vignati, M.: A note on p-subharmonic functions on complete manifolds. Manuscr. Math. 92, 339–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36, 417–450 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Savin, O.: Small perturbation solutions for elliptic equations. Comm. Partial Differ. Equ. 32, 557–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Villani, C.: Optimal Transport: Old and New. Springer-Verlag, Berlin (2009)

    Book  MATH  Google Scholar 

  33. Wang, X., Zhang, L.: Local gradient estimate for p-harmonic functions on Riemannian manifolds. Comm. Anal. Geom. 19, 759–771 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Zhang, X.: An Alexandroff–Bakelman–Pucci estimate on Riemannian manifolds. Adv. Math 232, 499–512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yau, S.-T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soojung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S. Harnack inequality for degenerate and singular operators of p-Laplacian type on Riemannian manifolds. Math. Ann. 366, 1721–1785 (2016). https://doi.org/10.1007/s00208-016-1372-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1372-7

Navigation