Skip to main content
Log in

Three circles theorems for harmonic functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We proved two three circles theorems for harmonic functions on manifolds in integral sense. As one application, on manifold with nonnegative Ricci curvature, whose tangent cone at infinity is the unique metric cone with unique conic measure, we showed the existence of nonconstant harmonic functions with polynomial growth. This existence result recovered and generalized the former result of Ding, and led to a complete answer of Ni’s conjecture. Furthermore in similar context, combining the techniques of estimating the frequency of harmonic functions with polynomial growth, which were developed by Colding and Minicozzi, we confirmed their conjecture about the uniform bound of frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almgren, F.J., Jr.: Almgren’s big regularity paper. Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2. With a preface by Jean E. Taylor and Vladimir Scheffer. World Scientific Monograph Series in Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, pp. xvi+955 (2000)

  2. Bakas, I., Kong, S., Ni, L.: Ancient solutions of Ricci flow on spheres and generalized Hopf fibrations. J. Reine Angew. Math. 663, 209–248 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Cheeger, J.: On the spectral geometry of spaces with cone-like singularities. Proc. Natl. Acad. Sci. USA 76, 2103–2106 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(2), 1, 189–237 (1996)

  6. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54(1), 13–35 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54(1), 37–74 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Tian, G.: On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay. Invent. Math. 118(1), 493–571 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28(3), 333–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, S.Y.: Liouville theorem for harmonic maps. Proc. Sympos. Pure Math. Am. Math. Soc. XXXVI, 3, 147–151 (1980)

  12. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects, Mathematical Surveys and Monographs, vol. 163, p. 517. American Mathematical Society, Providence, RI (2010)

  13. Colding, Tobias H.: New monotonicity formulas for Ricci curvature and applications I. Acta Math. 209(2), 229–263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colding, T.H., De Lellis, C., Minicozzi II, W.P.: Three circles theorems for Schrödinger operators on cylindrical ends and geometric applications. Commun. Pure Appl. Math. 61(11), 1540–1602 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colding, T.H., Minicozzi, W.P., II: Harmonic functions on manifolds. Ann. Math. 146(2), 3, 725–747 (1997)

  16. Colding, T.H., Minicozzi II, W.P.: Harmonic functions with polynomial growth. J. Differ. Geom. 46(1), 1–77 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Colding, Tobias H., Minicozzi II, W.P.: Large scale behavior of kernels of Schrödinger operators. Am. J. Math. 119(6), 1355–1398 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Colding, Tobias H.: Liouville theorems for harmonic sections and applications. Commun. Pure Appl. Math. 51(2), 113–138 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Colding, T.H., Minicozzi II, W.P.: Weyl type bounds for harmonic functions. Invent. Math. 131(2), 257–298 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Colding, T.H., Minicozzi II, W.P.: On uniqueness of tangent cones for Einstein manifolds. Invent. Math. 196(3), 515–588 (2014). doi:10.1007/s00222-013-0474-z

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding, Y.: Heat kernels and Green’s functions on limit spaces. Commun. Anal. Geom. 10(3), 475–514 (2002)

    Article  MATH  Google Scholar 

  22. Ding, Y.: An existence theorem of harmonic functions with polynomial growth. Proc. Am. Math. Soc. 132(2), 543–551 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in Mathematics, pp. xiv+517. Springer, Berlin (2001)

  25. Greene, R.E., Wu, H.-H.: Embedding of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier (Grenoble) 25(1), 215–235 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Progress in Mathematics, vol. 152, pp. xx+585. Birkhäuser Boston, Inc., Boston, MA (1999)

  27. Hadamard, J.: Sur les fonctions entières. Bull. Soc. Math. France 24, 186–187 (1896)

    MathSciNet  Google Scholar 

  28. Honda, Shouhei, Ricci curvature and \(L^p\)-convergence. J. Reine Angew. Math. (to appear). arXiv:1212.2052 [math.DG]

  29. Honda, S.: Harmonic functions on asymptotic cones with Euclidean volume growth. J. Math. Soc. Jpn. (2016) (to appear)

  30. Li, P.: Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature. Ann. Math. 124(2), 1, 1–21 (1986)

  31. Li, P.: Harmonic sections of polynomial growth. Math. Res. Lett. 4(1), 35–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, P., Schoen, R.: \(L^p\) and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153(3–4), 279–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Peter, Tam, L.-F.: Linear growth harmonic functions on a complete manifold. J. Differ. Geom. 29(2), 421–425 (1989)

    MathSciNet  MATH  Google Scholar 

  34. Li, Peter, Tam, L.-F.: Complete surfaces with finite total curvature. J. Differ. Geom. 33(1), 139–168 (1991)

    MathSciNet  MATH  Google Scholar 

  35. Li, P., Wang, J.: Counting massive sets and dimensions of harmonic functions. J. Differ. Geom. 53(2), 237–278 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Liu, G.: Three Circle Theorems on Kähler manifolds and applications. arXiv:1308.0710v3 [math.DG]

  37. Liu, G.: On the volume growth of Kähler manifolds with nonnegative bisectional curvature. arXiv:1403.3834v1 [math.DG],

  38. Ni, L.: Ancient solutions to Kähler-Ricci flow. Math. Res. Lett. 12(5–6), 633–653 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ni, L.: The large time asymptotics of the entropy, Complex analysis, pp. 301-306. Trends Math, Birkhäuser/Springer Basel AG, Basel (2010)

  40. Perelman, G.: A complete Riemannian manifold of positive Ricci curvature with Euclidean volume growth and nonunique asymptotic cone, Comparison geometry (Berkeley, CA, 1993–94). Math. Sci. Res. Inst. Publ. 30, 165–166 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Schoen, R., Yau, S.-T.: Lectures on differential geometry, p. 432. International Press, Cambridge (2010)

    Google Scholar 

  42. Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. 118(2), 3, 525–571 (1983)

  43. Sormani, C.: Harmonic functions on manifolds with nonnegative Ricci curvature and linear volume growth. Pac. J. Math. 192(1), 183–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Varopoulos, N.Th.: The Poisson kernel on positively curved manifolds. J. Funct. Anal. 44, 359-380 (1981)

  45. Warner, F.W.: Foundations of differentiable manifolds and Lie groups, Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, vol. 94, pp. ix+272. Springer, New York-Berlin (1983)

  46. Xu, G.: Large time behavior of the heat kernel. J. Differ. Geom. 98(3), 467–528 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Yau, S.-T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yau, S.-T.: Nonlinear analysis in geometry, Enseign. Math. 33(2), 1–2, 109–158 (1987)

  49. Zhang, L.: On the generic eigenvalue flow of a family of metrics and its application. Commun. Anal. Geom. 7(2), 259–278 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author was partially supported by NSFC 11401336. We thank Jiaping Wang for his interest and continuous encouragement, Xian-Tao Huang, William P. Minicozzi II, Christina Sormani, Shing-Tung Yau for their comments, and Liqun Zhang for sending the offprint [49] to us. We are indebted to Bo Yang for his comments and pointing out the relation between Conjecture 1.4 and the result in [22] to us in 2012. We are grateful to Shouhei Honda for his detailed comments and enthusiastic suggestions on the paper. Last but not least, we particularly thank Gang Liu for carefully reading the earlier version of the paper and pointing out some gaps, and we benefit from several long conversations with him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G. Three circles theorems for harmonic functions. Math. Ann. 366, 1281–1317 (2016). https://doi.org/10.1007/s00208-016-1366-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1366-5

Mathematics Subject Classification

Navigation