Skip to main content
Log in

Determination of the spacetime from local time measurements

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider an inverse problem for a Lorentzian spacetime (Mg), and show that time measurements, that is, the knowledge of the Lorentzian time separation function on a submanifold \(\Sigma \subset M\) determine the \(C^\infty \)-jet of the metric in the Fermi coordinates associated to \(\Sigma \). We use this result to study the global determination of the spacetime (Mg) when it has a real-analytic structure or is stationary and satisfies the Einstein-scalar field equations. In addition to this, we require that (Mg) is geodesically complete modulo scalar curvature singularities. The results are Lorentzian counterparts of extensively studied inverse problems in Riemannian geometry—the determination of the jet of the metric and the boundary rigidity problem. We give also counterexamples in cases when the assumptions are not valid, and discuss inverse problems in general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andersson, L., Dahl, M., Howard, R.: Boundary and lens rigidity of Lorentzian surfaces. Trans. Am. Math. Soc. 348, 2307–2329 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, M.: On stationary vacuum solutions to the Einstein equations. Ann. Henri Poincare 1, 977–994 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, M., Katsuda, A., Kurylev, Y., Lassas, M., Taylor, M.: Boundary regularity for the Ricci equation, Geometric Convergence, and Gelfand’s Inverse Boundary Problem. Invent. Math. 158, 261–321 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian geometry. Pure Appl. Math., vol. 67, Dekker (1981)

  5. Belishev, M., Kurylev, Y.: To the reconstruction of a Riemannian manifold via its spectral data (BC-method). Commun. PDE 17, 767–804 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictment négative. Geom. Funct. Anal. 5, 731–799 (1995)

    Article  MathSciNet  Google Scholar 

  7. Boyer, R., Lindquist, R.: Maximal analytic extension of the Kerr Metric. J. Math. Phys. 8, 265–281 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burago, D., Ivanov, S.: Boundary rigidity and filling volume minimality of metrics close to a flat one. Ann. Math. 171(2), 1183–1211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Croke, C.: Rigidity for surfaces of non-positive curvature. Comment. Math. Helv. 65, 150–169 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Croke, C., Dairbekov, N., Sharafutdinov, V.: Local boundary rigidity of a compact Riemannian manifold with curvature bounded above. Trans. Am. Math. Soc. 352(9), 3937–3956 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chavel, I.: Riemannian geometry: a modern introduction. Volume 98 of Cambridge Studies in Advanced Mathematics, second edn. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  12. Choquet-Bruhat, Y.: General relativity and the Einstein equations. Oxford Univ. Press, Oxford (2009)

    MATH  Google Scholar 

  13. DeTurck, D.M., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. (4), 14(3), 249-260 (1981)

  14. Dzhunushaliev, V., et al.: Non-singular solutions to Einstein–Klein–Gordon equations with a phantom scalar field. J. High Energy Phys. 07, 094 (2008)

    Article  MathSciNet  Google Scholar 

  15. Eskin, G.: Inverse hyperbolic problems and optical black holes. Commun. Math. Phys. 297, 817–839 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eskin, G.: Artificial black holes, Spectral theory and geometric analysis, 43-53, Contemp. Math., 535, Amer. Math. Soc., Providence, RI (2011)

  17. Fischer, A., Marsden, J.: The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system I. Commun. Math. Phys. 28, 1–38 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fridman, M., et al.: Demonstration of temporal cloaking. Nature 481, 62 (2012)

    Article  Google Scholar 

  19. Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685–693 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Full-wave invisibility of active devices at all frequencies. Commun. Math. Phys. 275, 749–789 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Invisibility and inverse problems. Bull. Am. Math. Soc. 46, 55–97 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices. Electromagn. Wormholes Transform. Opt. SIAM Rev. 51, 3–33 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Hartle, J., Hawking, S.: Solutions of the Einstein–Maxwell equations with many black holes. Commun. Math. Phys. 26, 87–101 (1972)

    Article  MathSciNet  Google Scholar 

  24. Hawking, S., Ellis, G.: The Large Scale Structure of Space-Time. Cambridge Univ. press, Cambridge (1973)

    Book  MATH  Google Scholar 

  25. Helgason, S.: Differential geometry and symmetric spaces, Pure and Applied Mathematics, vol. XII. Academic Press, New York (1962)

    MATH  Google Scholar 

  26. Hughes, T., Kato, T., Marsden, J.: Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal. 63, 273–294 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–148 (1983)

    MathSciNet  MATH  Google Scholar 

  28. Ionescu, A., Klainerman, S.: On the local extension of Killing vector-fields in Ricci flat manifolds. J. Am. Math. Soc. 26, 563–593 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Katchalov, A., Kurylev, Y.: Multidimensional inverse problem with incomplete boundary spectral data. Commun. PDE 23, 55–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Katchalov, A., Kurylev, Y., Lassas, M.: Inverse boundary spectral problems. Chapman-Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  31. Konstant, B.: Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold. Trans. AMS 80, 528–542 (1955)

    Article  MathSciNet  Google Scholar 

  32. Krupchyk, K., Kurylev, Y., Lassas, M.: Inverse spectral problems on a closed manifold. J. de Math. Pures et Appl. 90, 42–59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kurylev, Y., Lassas, M., Uhlmann, G.: Inverse problems in spacetime I: Inverse problems for Einstein equations, p. 63. Preprint arXiv:1406.4776 (2014)

  34. Kurylev, Y., Lassas, M., Uhlmann, G.: Inverse problems in spacetime II: Reconstruction of a Lorentzian manifold from light observation sets, p. 17. Preprint arXiv:1405.3386 (2015)

  35. Lassas, M., Oksanen, L.: Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets. Duke Math. J. 163, 1071–1103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lassas, M., Taylor, M., Uhlmann, G.: The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Commun. Geom. Anal. 11, 207–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lassas, M., Sharafutdinov, V., Uhlmann, G.: Semi-global boundary rigidity for Riemannian metrics. Math. Ann. 325, 767–793 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lassas, M., Uhlmann, G.: Determining Riemannian manifold from boundary measurements. Ann. Sci. École Norm. Sup. 34, 771–787 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Lee, J., Uhlmann, G.: Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42, 1097–1112 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Leonhardt, U., Philbin, T.: General relativity in electrical engineering. New J. Phys. 8, 247 (2006)

    Article  Google Scholar 

  42. McCall, M., et al.: A spacetime cloak, or a history editor. J. Opt. 13, 024003 (2011)

    Article  Google Scholar 

  43. Michel, R.: Sur la ridigité imposée par la longueur des géodésiques. Invent. Math. 65, 71–83 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Moffat, J.: Non-Singular Spherically Symmetric Solution in Einstein-Scalar-Tensor Gravity. arXiv:gr-qc/0702070 (2008)

  45. Müller zum Hagen, H.: On the analyticity of stationary vacuum solutions of Einstein’s equation. Proc. Camb. Philos. Soc. 68, 199–201 (1970)

    Article  MATH  Google Scholar 

  46. Morrey, C.: On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. Am. J. Math. 80, 198–237 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  47. O’Neill, B.: The geometry of Kerr black holes. A K Peters Ltd (1995)

  48. O’Neill, B.: Semi-Riemannian Geometry With Applications to Relativity. Academic Press, New York (1990)

    MATH  Google Scholar 

  49. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nomizu, K.: On local and global existence of Killing vector fields. Ann. Math. 72, 105–120 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  51. Paternain, G., Salo, M., Uhlmann, G.: Tensor tomography on surfaces. Invent. Math. 193(1), 229–247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Otal, J.P.: Sur les longuer des géodésiques d’une métrique a courbure négative dans le disque. Comment. Math. Helv. 65, 334–347 (1990)

    Article  MathSciNet  Google Scholar 

  53. Pestov, L., Uhlmann, G.: Two dimensional simple compact manifolds with boundary are boundary rigid. Ann. Math. 161(2), 1089–1106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sacks, K., Wu, H.: General Relativity for Mathematicians. Springer, New York (1977)

    Book  Google Scholar 

  55. Stefanov, P., Uhlmann, G.: Lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom. 82, 383–409 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Stefanov, P., Uhlmann, G.: Rigidity for metrics with the same lengths of geodesics. Math. Res. Lett. 5, 83–96 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Stefanov, P., Uhlmann, G.: Boundary rigidity and stability for generic simple metrics. J. Am. Math. Soc. 18, 975–1003 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Synge, J.L.: Relativity: The General Theory, North-Holland, Amsterdam (1960)

  59. Tod, P.: Analyticity of strictly static and strictly stationary, inheriting and non-inheriting Einstein–Maxwell solutions. Gen. Rel. Grav. 39, 1031–1042 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Visser, M.: The Kerr spacetime: a brief introduction, In: Wiltshire et al. (ed.) The Kerr spacetime, pp. 3-37. Cambridge Univ. Press (2009)

Download references

Acknowledgments

The authors express their gratitude to the Mittag-Leffler Institute, where parts of this work have been done. The authors would like to thank Prof. Gunther Uhlmann for his generous support related to this work, and for suggesting the method used in the proof of Theorem 1. ML was partially supported by the Academy of Finland project 272312 and the Finnish Centre of Excellence in Inverse Problems Research 2012-2017. YY was partially supported by the NSF grants DMS 1265958 and DMS 1025372. LO was partially supported by the EPSRC grant EP/L026473/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauri Oksanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassas, M., Oksanen, L. & Yang, Y. Determination of the spacetime from local time measurements. Math. Ann. 365, 271–307 (2016). https://doi.org/10.1007/s00208-015-1286-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1286-9

Navigation