Skip to main content
Log in

Smooth approximations of the conical Kähler–Ricci flows

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this note, we show that the conical Kähler–Ricci flows introduced in Chen and Wang (Bessel functions, Heat kernel and the conical Kähler–Ricci flow. J. Funct. Anal. 269(2), 2013) exist for all time \(t\in [0,\infty )\) in the weak sense as in Definition 1.2. As a key ingredient of the proof, we show that a conical Kähler–Ricci flow is actually the limit of a sequence of smooth Kähler–Ricci flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, R.: A thermodynamic formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics. Adv. Math. 248, 1254–1297 (2013)

  2. Brendle, S.: Ricci flat Kähler metrics with edge singularities. Int. Math. Res. Not. 24, 5727–5766 (2013)

  3. Campana, F., Guenancia, H., Paun, M.: Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields

  4. Cao, H.-D.: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X.-X., Donaldson, S., Sun, S.: Kähler-Einstein metric on Fano manifolds, I: approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X.-X., Donaldson, S., Sun, S.: Kähler-Einstein metric on Fano manifolds, II: limits with cone angle less than \(2\pi \). J. Amer. Math. Soc. 28, 199–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X.-X., Donaldson, S., Sun, S.: Kähler-Einstein metric on Fano manifolds, III: limits with cone angle approaches \(2\pi \) and completion of the main proof. J. Amer. Math. Soc. 28, 235–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.-X., Wang, Y.: Bessel functions, Heat kernel and the conical Kähler-Ricci flow. J. Funct. Anal. 269(2) (2013)

  9. Dinew, S., Zhang, Z.: Stability of bounded solutions for degenerate complex Monge-Ampre equations. Adv. Math. 225(1), 367–388 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donaldson, S.: Kähler metrics with cone singularities along a divisor. In: Essays in mathematics and its applications, pp. 49–79. Springer, Heidelberg (2012)

  11. Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler-Einstein metrics. J. Am. Math. Soc. 22, 607–639 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guenancia, H., Paun, M.: Conic singularities metrics with perscribed Ricci curvature: the case of general cone angles along normal crossing divisors. arXiv:1307.6375

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin

  14. Jeffres, T.: Uniqueness of Kähler-Einstein cone metrics. Publ. Math. 44 (2000)

  15. Jeffres, T., Mazzeo, R., Rubinstein, Y.: Kähler-Einstein metrics with edge singularities. Ann. Math. (To appear)

  16. Kolodziej, S.: Hölder continuity of solutions to the complex Monge-Ampere equation with the right-hand side in \(Lsp p\): the case of compact Khler manifolds. Math. Ann., 379–386 (2008)

  17. Ladyzenskaja, S., Ural’ceva, N.N.: Linear and quasi-linear equations of parabolic type. In: Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence

  18. Li, C., Sun, S.: Conical Kähler-Einstein metric revisited. Comm. Math. Phys. 331(3), 927–973 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, J.W., Zhang, X.: The conical Kähler–Ricci flow on Fano manifolds. arXiv:1402.1832

  20. Mazzeo, R., Rubinstein, Y., Sesum, N.: Ricci flow on surfaces with conic singularities. arXiv:1306.6688

  21. Morgan, J., Tian, G.: Ricci flow and the poincare conjecture. In: Clay Mathematics Monographs

  22. Siu, Y.T.: Lectures on Hermitian-Einstein Metrics for Stable Bundles and Käahler-Einstein Metrics. Birkhäauser, Basel (1987)

    Book  Google Scholar 

  23. Song, J., Wang, X.: The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. arXiv:1207.4839

  24. Wang, K.H.: On the regularity theory of fully nonlinear parabolic equations. Bull. Am. Math. Soc. (N.S.). 22(1), 107–114 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y.: Notes on the \(L^2\)-estimates and regularity of parabolic equations over conical manifolds. (Unpublished work)

  26. Yao, C.J.: Existence of weak conical Kähler-Einstein metrics along smooth hypersurfaces. Math. Ann. 362(3–4), 1287–1304 (2015)

  27. Yin, H.: Ricci flow on surfaces with conical singularities, II. arXiv:1305.4355

Download references

Acknowledgments

This is a side project which grows out of a joint project with Prof Xiuxiong Chen on the conical KRFs. The author would like to thank Prof Chen for kindly suggesting this project and for his constant support over years. The author also would like to thank Chengjian Yao for related discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Smooth approximations of the conical Kähler–Ricci flows. Math. Ann. 365, 835–856 (2016). https://doi.org/10.1007/s00208-015-1263-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1263-3

Keywords

Navigation