Skip to main content
Log in

On the \(E\)-polynomials of a family of \({\text {Sl}}_n\)-character varieties

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We find the \(E\)-polynomials of a family of twisted character varieties \({\mathcal {M}}({\text {Sl}}_n)\) of Riemann surfaces by proving they have polynomial count, and applying a result of Katz regarding the counting functions. To count the number of \(\mathbb {F}_q\)-points of these varieties as a function of \(q,\) we invoke a formula from Frobenius. Our calculations make use of the character tables of \({\text {Sl}}_n(q),\) partially computed by Lehrer, and a result of Hanlon on the Möbius function of a fixed subposet of set-partitions. We compute the Euler characteristic of the \({\mathcal {M}}({\text {Sl}}_n)\) with these polynomials, and show they are connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Most of the results in this paper can be found in the author’s Ph.D. thesis [26].

  2. Also: the biggest \((\frac{|H|}{\chi (1)})\) is attained by the character with smallest degree \(\chi (1).\)

  3. The restriction of the trivial character \(1_G\) is \(1_H,\) hence it cannot have more than one component.

References

  1. Alvis, D.: The duality operation in the character ring of a finite Chevalley group. Bull. Am. Math. Soc. (N.S.) 1(6), 907–911 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bershadsky, M.: Topological reduction of 4D SYM to 2D \(\sigma \)-models. In: Strings’95 (Los Angeles. CA, 1995), pp. 35–46. World Sci. Publications, River Edge (1996)

  3. Curtis, C.W.: Truncation and duality in the character ring of a finite group of Lie type. J. Algebra 62(2), 320–332 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deligne, P.: Équations Différentielles à Points Singuliers réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Berlin (1970)

  5. Deligne, P.: Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Digne, F., Michel, J.: Representations of Finite Groups of Lie Type. London Mathematical Society Student Texts, vol. 21. Cambridge University Press, Cambridge (1991)

  8. Donagi, R., Pantev, T.: Langlands duality for Hitchin systems. Invent. Math. 189(3), 653–735 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freed, D.S., Quinn, F.: Chern–Simons theory with finite gauge group. Commun. Math. Phys. 156(3), 435–472 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frobenius, G., Schur, I.: Über die reellen Darstellungen der endlichen Gruppen. Reimer, London (1906)

  11. Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics, vol. 129. Springer, New York (1991). (A first course, Readings in Mathematics)

  12. Green, J.A.: The characters of the finite general linear groups. Trans. Am. Math. Soc. 80, 402–447 (1955)

    Article  MATH  Google Scholar 

  13. Hanlon, P.: The fixed-point partition lattices. Pac. J. Math. 96(2), 319–341 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hausel, T, Rodriguez-Villegas, F.: Mixed Hodge polynomials of character varieties. Invent. Math. 174(3):555–624 (2008). (With an appendix by Nicholas M. Katz)

  15. Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1):59–126 (1987)

  17. Hitchin, N.: Lectures on special Lagrangian submanifolds. In: Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999). AMS/IP Studies in Advanced Mathematics, vol. 23, pp. 151–182. American Mathematical Society, Providence (2001)

  18. Kac, V.G.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56(1), 57–92 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karkar, M.T., Green, J.A.: A theorem on the restriction of group characters, and its application to the character theory of \({\rm SL}(n,\, q)\). Math. Ann. 215, 131–134 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lang, S.: Algebraic groups over finite fields. Am. J. Math. 78, 555–563 (1956)

    Article  MATH  Google Scholar 

  22. Lehrer, G.I.: The characters of the finite special linear groups. J. Algebra 26, 564–583 (1973)

  23. Logares, M., Muñoz, V., Newstead, P.E.: Hodge polynomials of \({\rm SL}(2,{\mathbb{C}})\)-character varieties for curves of small genus. Rev. Mat. Complut. 26(2), 635–703 (2013)

    Article  MathSciNet  Google Scholar 

  24. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press/Oxford University Press, New York (1995). (With contributions by A. Oxford Science Publications, Zelevinsky)

  25. Mednyh, A.D.: Determination of the number of nonequivalent coverings over a compact Riemann surface. Dokl. Akad. Nauk SSSR 239(2), 269–271 (1978)

    MathSciNet  Google Scholar 

  26. Mereb, M.: On the e-polynomials of a family of character varieties. Technical report

  27. Mumford, D., Fogarty, J., Kirwan, F.C.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1994)

  28. Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge Structures. Ergebnisse der Mathematik Und Ihrer Grenzgebiete. Springer, Berlin (2008)

  29. Reineke, M.: The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152(2), 349–368 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Serre, J.-P.: Linear Representations of Finite Groups. Springer, New York (1977). (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, vol. 42)

  31. Serre, J.-P.: Topics in Galois Theory. Research Notes in Mathematics, vol. 1. Jones and Bartlett Publishers, Boston (1992). (Lecture notes prepared by Henri Damon [Henri Darmon], With a foreword by Darmon and the author)

  32. Seshadri, C.S.: Geometric reductivity over arbitrary base. Adv. Math. 26(3), 225–274 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  33. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    Article  MATH  Google Scholar 

  34. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997). (With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original)

  35. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is \(T\)-duality. Nucl. Phys. B 479(1–2), 243–259 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Thiem, N., Vinroot, C.R.: On the characteristic map of finite unitary groups. Adv. Math. 210(2), 707–732 (2007)

Download references

Acknowledgments

The author wishes to thank the University of Texas at Austin, for having kept their doors open at all times, and the Harrington Foundation, for financial support, and many stimulating meetings with a diverse community of scholars from every corner of knowledge. This is part of his Ph.D. thesis, written under the supervision of Rodríguez-Villegas, to whom the author is greatly indebted, as to Vaaler, Voloch, Lehrer and specially Ben-Zvi for the assistance provided on the topic. Helpful suggestions from Miatello, García Fernández, Hausel, Jeronimo, Quallbrunn, Cueto and Mautner were greatly appreciated. The author is particularly grateful for the orientation given by Adduci. Special thanks are extended to members of FKC for their feedback, to Dickenstein, Cortiñas, Lalin, D’Andrea, Cattani, Fauring and Cuckierman, for their trust and encouragment, and to social worker Ramírez for her endless patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mereb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mereb, M. On the \(E\)-polynomials of a family of \({\text {Sl}}_n\)-character varieties. Math. Ann. 363, 857–892 (2015). https://doi.org/10.1007/s00208-015-1183-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1183-2

Navigation