Skip to main content
Log in

\(L^4\)-norms of Hecke newforms of large level

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a new upper bound for the \(L^4\)-norm of a holomorphic Hecke newform of large fixed weight and prime level \(q\rightarrow \infty \). This is achieved by proving a sharp mean value estimate for a related \(L\)-function on \(GL(6)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These authors actually proved their results for Hecke-Maass forms, but very similar arguments would work for holomorphic Hecke newforms as well.

References

  1. Atkin, A.O.L., Li, W.C.W.: Twists of newforms and pseudo-eigenvalues of \(W\)-operators. Invent. Math. 48(3), 221–243 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blomer, V.: On the 4-norm of an automorphic form. J. Eur. Math. Soc. 15(5), 1825–1852 (2013)

  3. Blomer, V., Holowinsky, R.: Bounding sup-norms of cusp forms of large level. Invent. Math. 179(3), 645–681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blomer, V., Khan, R., Young, M.: Mass distribution of holomorphic cusp forms. Duke Math. J. 162(14), 2609–2644 (2013)

  5. Duke, W., Friedlander, J.B., Iwaniec, H.: Bounds for automorphic \(L\)-functions. II. Invent. Math. 115(2), 219–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, J.: On the positivity of the central critical values of automorphic \(L\)-functions for GL(2). Duke Math. J. 83(1), 157–190 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harcos, G., Templier, N.: On the sup-norm of Maass cusp forms of large level. III. Math. Ann. 356(1), 209–216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoffstein, J., Lockhart, P., Lieman, D.: An effective zero-free region. Ann. Math. (2) 140(1), 177–181 (1994) (Appendix to Coefficients of Maass forms and the Siegel zero)

  9. Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. of Math. (2) 172(2), 1517–1528 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Ichino, A., Templier, N.: On the Voronoi formula for GL (\(n\)). Am. J. Math. 135(1), 65–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. American Mathematical Society Colloquium Publications, Providence (2004)

    MATH  Google Scholar 

  12. Iwaniec, H., Luo, W., Sarnak, P.: Low lying zeros of families of \(L\)-functions. Ht. Études Sci. Publ. Math. (2000) 91, 55–131 (2001)

    Article  Google Scholar 

  13. Lapid, E.M.: On the nonnegativity of Rankin–Selberg \(L\)-functions at the center of symmetry. Int. Math. Res. Not. 2, 65–75 (2003)

    Article  MathSciNet  Google Scholar 

  14. Li, W.C.W.: \(L\)-series of Rankin type and their functional equations. Math. Ann. 244(2), 135–166 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. (2) 163(1), 165–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, S.-C., Masri, R., Young, M.: Subconvexity and equidistribution of Heegner points in the level aspect. Compositio Math. 149(7), 1150–1174 (2013)

  17. Luo, W.: \(L^4\)-norms of the dihedral Maass forms. Int. Math. Res. Not. 2014(8), 2294–2304 (2014)

  18. Miller, S.D., Schmid, W.: Automorphic distributions, \(L\)-functions, and Voronoi summation for GL (3). Ann. of Math. (2) 164(2), 423–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nelson, P.D.: Equidistribution of cusp forms in the level aspect. Duke Math. J. 160(3), 467–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. (3) 31(1), 79–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Soundararajan, K.: Quantum unique ergodicity for \({\text{ S }L}_2{\mathbb{(}Z)}\backslash {\mathbb{H}}\). Ann. Math. (2) 172(2), 1529–1538 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Watson, T.: Rankin triple products and quantum chaos. http://arxiv.org/abs/0810.0425

Download references

Acknowledgments

While working on this paper, the authors were supported by a Grant from the European Research Council (Grant agreement number 258713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwanur Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buttcane, J., Khan, R. \(L^4\)-norms of Hecke newforms of large level. Math. Ann. 362, 699–715 (2015). https://doi.org/10.1007/s00208-014-1142-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1142-3

Keywords

Navigation