Skip to main content
Log in

Topological theory of non-autonomous parabolic evolution inclusions on a noncompact interval and applications

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we consider the topological structure of the solution set of non-autonomous parabolic evolution inclusions with time delay, defined on non-compact intervals. The result restricted to compact intervals is then extended to non-autonomous parabolic control problems with time delay. Moreover, as the applications of the information about the structure, we establish the existence result of global integral solutions for non-autonomous Cauchy problems subject to nonlocal condition, and prove the invariance of a reachability set for non-autonomous control problems under single-valued nonlinear perturbations. Finally, some illustrating examples are supplied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acquistapace, P.: Evolution operators and strong solution of abstract parabolic equations. Differ. Integral Equ. 1, 433–457 (1988)

    MATH  MathSciNet  Google Scholar 

  2. Acquistapace, P., Terreni, B.: A unified approach to abstract linear non-autonomous parabolic equations. Rend. Semin. Mat. Univ. Padova 78, 47–107 (1987)

    MATH  MathSciNet  Google Scholar 

  3. Aizicovici, S., McKibben, M., Reich, S.: Anti-periodic solutions to non-monotone evolution equations with discontinuous nonlinearities. Nonlinear Anal. 43, 233–251 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aizicovici, S., Reich, S.: Anti-periodic solutions to a class of non-monotone evolution equations. Discret. Contin. Dyn. Syst. 5, 35–42 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Andres, J., Gabor, G.: L. G\({\acute{\rm o}}\)rniewicz, Topological structure of solution sets to multi-valued asymptotic problems. Z. Anal. Anwendungen 19(1), 35–60 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Andres, J., Pavlačková, M.: Topological structure of solution sets to asymptotic boundary value problems. J. Differ. Equ. 248, 127–150 (2010)

    Article  MATH  Google Scholar 

  7. Aronszajn, N.: Le correspondant topologique de l’unicité dans la théorie des équations différentielles. Ann. Math. 43, 730–738 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bader, R., Kryszewski, W.: On the solution sets of differential inclusions and the periodic problem in Banach spaces. Nonlinear Anal. 54, 707–754 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bakowska, A., Gabor, G.: Topological structure of solution sets to differential problems in Fréchet spaces. Ann. Polon. Math. 95(1), 17–36 (2009)

    Article  MathSciNet  Google Scholar 

  10. Baras, P.: Compacité de l’opérateur definissant la solution d’une équation d’évolution non linéaire \((du/dt) + Au \ni f\), C. R. Acad. Sci. Sér. I Math. 286, 1113–1116 (1978)

    MATH  MathSciNet  Google Scholar 

  11. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems, vol. 2, p. 575, 2nd edn. Birkhauser, Boston (2007)

  12. Bothe, D.: Multi-valued perturbations of \(m\)-accretive differential inclusions. Isr. J. Math. 108, 109–138 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bressan, A., Wang, Z.P.: Classical solutions to differential inclusions with totally disconnected right-hand side. J. Differ. Equ. 246, 629–640 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Byszewski, L.: Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problems. J. Math. Anal. Appl. 162, 494–505 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carvalho, A.N., Langa, J.A.: Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds. J. Differ. Equ. 233(2), 622–653 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Carvalho, A.N., Langa, J.A.: An extension of the concept of gradient semigroups which is stable under perturbation. J. Differ. Equ. 246(7), 2646–2668 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Castaing, C., Monteiro-Marques, D.P.: Periodic solutions of evolution problems associated with a moving convex set. C. R. Acad. Sci. Paris Ser. A 321, 531–536 (1995)

    MATH  MathSciNet  Google Scholar 

  18. Chen, D.H., Wang, R.N., Zhou, Y.: Nonlinear evolution inclusions: topological characterizations of solution sets and applications. J. Funct. Anal. 265, 2039–2073 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite Dimensional Linear Systems Theory, vol. 21, p. 698. Springer, New York (1995)

  20. Deimling, K.: Multi-valued Differential Equations, vol. 1, p. 274. de Gruytr, Berlin (1992)

  21. Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, 630–637 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Donchev, T., Farkhi, E., Mordukhovich, B.S.: Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces. J. Differ. Equ. 243, 301–328 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dugundji, J.: An extension of Tietze’s theorem. Pac. J. Math. 1, 353–367 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  24. Engel, K.J., Nagel, R.: One-parameter semigroups for linear evolution equations. In: Graduate Texts in Mathematics, vol. 194, p. 589, with contributions by Brendle, S., Campiti, M., Hahn, T., Metafune, G., Nickel, G., Pallara, D., Perazzoli, C., Rhandi, A., Romanelli, S., Schnaubelt, R., Springer, Berlin (2000)

  25. Gabor, G., Quincampoix, M.: On existence of solutions to differential equations or inclusions remaining in a prescribed closed subset of a finite-dimensional space. J. Differ. Equ. 185, 483–512 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gabor, G., Grudzka, A.: Structure of the solution set to impulsive functional differential inclusions on the half-line. Nonlinear Differ. Equ. Appl. 19, 609–627 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings, vol. 4, p. 539. Kluwer, Dordrecht (1999)

  28. Górniewicz, L., Lassonde, M.: Approximation and fixed points for compositions of \(R_\delta \)-maps. Topol. Appl. 55(3), 239–250 (1994)

    Article  MATH  Google Scholar 

  29. Goldstein, J.A.: Semigroups of linear operators and applications. In: Oxford Mathematical Monographs, p. 256. Oxford University Press, New York (1985)

  30. Hirano, N.: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces. Proc. Am. Math. Soc. 120, 185–192 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hu, S.C., Papageorgiou, N.S.: On the topological regularity of the solution set of differential inclusions with constraints. J. Differ. Equ. 107(2), 280–289 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing multi-valued maps and semilinear differential inclusions in Banach spaces. In: de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, p. 231. Walter de Gruyter, Berlin (2001)

  33. Mahmudov, N.I., Denker, A.: On controllability of linear stochastic systems. Int. J. Control 73, 144–151 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Naito, K.: On controllability for a nonlinear Volterra equation. Nonlinear Anal. 18(1), 99–108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Naito, K., Park, J.Y.: Approximate controllability for trajectories of a delay Volterra control system. J. Optim. Theory Appl. 61(2), 271–279 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  36. Paicu, A.: Periodic solutions for a class of differential inclusions in general Banach spaces. J. Math. Anal. Appl. 337, 1238–1248 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Paicu, A., Vrabie, I.I.: A class of nonlinear evolution equations subjected to nonlocal initial conditions. Nonlinear Anal. 72, 4091–4100 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. In: Applied Mathematical Sciences, vol. 44, p. 282. Springer, New York (1983)

  39. Seidman, T.I.: Invariance of the reachable set under nonlinear perturbations. SIAM J. Control Optim. 25, 1173–1191 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  40. Staicu, V.: On the solution sets to nonconvex differential inclusions of evolution type. Discret. Contin. Dyn. Syst. 2, 244–252 (1998)

    MathSciNet  Google Scholar 

  41. Staicu, V.: On the solution sets to differential inclusions on unbounded interval. Proc. Edinb. Math. Soc. 43, 475–484 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Vrabie, I.I.: Periodic solutions for nonlinear evolution equations in a Banach space. Proc. Am. Math. Soc. 109(3), 653–661 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  43. Vrabie, I.I.: Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, 2nd edn. Wiley, New York (1995)

  44. Vrabie, I.I.: Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions. J. Funct. Anal. 262, 1363–1391 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wang, R.N., Zhu, P.X.: Non-autonomous evolution inclusions with nonlocal history conditions: global integral solutions. Nonlinear Anal. 85, 180–191 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yagi, A.: Abstract quasilinear evolution equations of parabolic type in Banach spaces. Boll. Unione Mat. Ital. B (7) 5, 341–368 (1991)

    MATH  MathSciNet  Google Scholar 

  48. Zhu, Q.J.: On the solution set of differential inclusions in Banach space. J. Differ. Equ. 93, 213–237 (1991)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The first author acknowledges support from the NNSF of China (Nos. 11471083, 11101202). The second author acknowledges support from the University Scientific and Technological Innovation Project of Guangdong Province (No. 2013KJCX0068). The third author acknowledges support from the NNSF of China (No. 11271309) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20114301110001). The authors also want to express their thanks to the anonymous referees for their suggestions and comments that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RN., Ma, QH. & Zhou, Y. Topological theory of non-autonomous parabolic evolution inclusions on a noncompact interval and applications. Math. Ann. 362, 173–203 (2015). https://doi.org/10.1007/s00208-014-1110-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1110-y

Mathematics Subject Classification

Navigation