Skip to main content
Log in

Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Measure contraction property is one of the possible generalizations of Ricci curvature bound to more general metric measure spaces. In this paper, we discover necessary and sufficient conditions for a three dimensional contact subriemannian manifold to satisfy this property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(M\) :

A metric space or a manifold

\(\langle \cdot ,\cdot \rangle ,\; \left| \cdot \right| \) :

A subriemannian metric and its norm

\(\Delta \) :

A distribution on \(M\)

\(\eta \) :

The Popp’s measure

\(\mu ,\; \mu _0,\mu _1,\; \mu _t\) :

Measures on \(M\)

\(\Pi \) :

A measure on \(M\times M\)

\(d\) :

A distance function on \(M\)

\(U\) :

A Borel set in \(M\)

\(H\) :

Subriemannian Hamiltonian

\(e^{t\vec H}\) :

Subriemannian geodesic flow

\(e_i(t),f_i(t)\) :

Canonical Darboux frame

\(R^{ij}_\alpha (t)\) :

Curvature invariants

\(v\) :

Tangent vectors

\(\alpha \) :

Covectors

\(\alpha _0\) :

Contact form

\(v_0\) :

The Reeb field

\(v_1,v_2\) :

Subriemannian orthonormal basis

\(\alpha _0,\alpha _1,\alpha _2\) :

Dual basis of \(v_0,v_1,v_2\)

\(\theta \) :

Tautological 1-form on \(T^*M\)

\(\omega \) :

Standard symplectic 2-form on \(T^*M\)

\(X\) :

A tangent vector in \(TT^*M\)

\(\mathcal L\) :

Lie derivative

\(\nabla _H\) :

Horizontal gradient

\(\Delta _H\) :

Sub-Laplacian

References

  1. Agrachev, A.: Exponential mappings for contact sub-Riemannian structures. J. Dynamical and Control Systems 2, 321–358 (1996)

    Google Scholar 

  2. Agrachev, A.: Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Semin. Mat. Torino 56, 1–12 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Agrachev, A., Gamkrelidze, R.: Feedback-invariant optimal control theory and differential geometry, I. Regular extremals. J. Dyn. Control Syst. 3, 343–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agrachev, A., Lee, P.W.Y.: Optimal transport under nonholonomic constraints. Trans. Am. Math. Soc. 361, 6019–6047 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agrahcev, A., Lee, P.W.Y.: Bishop and Laplacian comparison theorems on three dimensional contact subriemannian manifolds with symmetry. J. Geom. Anal. 1–26 (2011). arXiv:1105.2206

  6. Agrachev, A., Zelenko, I.: Geometry of Jacobi curves, I, II. J. Dyn. Control Syst. 8(93–140), 167–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ahdout, S.: Fanning curves of Lagrangian manifolds and geodesic flows. Duke Math. J. 59(2), 537–552 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio, L., Rigot, S.: Optimal mass transportation in the Heisenberg group. J. Funct. Anal. 208, 261–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barletta, E., Dragomir, S.: Jacobi fields of the Tanaka-Webster connection on Sasakian manifolds. Kodai Math. J. 29(3), 406–454 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baudoin, F., Garofalo, N.: Generalized Bochner formulas and Ricci lower bounds for sub-Riemannian manifolds of rank two (preprint, arXiv:0904.1623)

  11. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries (preprint, arXiv:1101.3590)

  12. Baudoin, F., Bonnefont, M., Garofalo, N.: A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincare inequality. Math. Ann. 358(3–4), 833–860 (2014)

    Google Scholar 

  13. Bhatia, R.: Graduate Texts in Mathematics. Matrix analysis, 169th edn. Springer-Verlag, New York (1997)

    Google Scholar 

  14. Blair, D.E.: Progress in Mathematics, 203. Riemannian geometry of contact and symplectic manifolds, 2nd edn. Birkhäuser Boston Inc, Boston (2010)

    Google Scholar 

  15. Brenier, Y.: Polar factorization and monotome rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 323–351 (1991)

    Article  MathSciNet  Google Scholar 

  16. Cannarsa, P., Rifford, L.: Semiconcavity results for optimal control problems admitting no singular minimizing controls. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(4), 773–802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, H.D., Yau, S.T.: Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields. Math. Z. 211(3), 485–504 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chanillo, S., Yang, P.: Isoperimetric inequalities and volume comparison theorems on CR manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(2), 279–307 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Coulhon, T., Holopainen, I., Saloff-Coste, L.: Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems. Geom. Funct. Anal. 11(6), 1139–1191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cordero-Erausquin, D., McCann, R., Schmuckenschlager, M.: A Riemannian interpolation inequality à la Borell, Brascamb and Lieb. Invent. Math. 146, 219–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Figalli, A.: Existence, uniqueness and regularity of optimal transport maps. SIAM J. Math. Anal. 39(1), 126–137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Figalli, A., Rifford, L.: Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal. 20(1), 124–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Freiling, G., Jank, G., Abou-Kandil, H.: Generalized Riccati difference and differential equations. Linear Algebra Appl. 241(242), 291–303 (1996)

    Article  MathSciNet  Google Scholar 

  24. Foulon, P.: Géométrie des équations différeetielles du second ordre. Ann. Inst. H. Poincaré Phys. Théor. 45(1), 1–28 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Grifone, J.: Structure presque-tangente et connexions I. Ann. Inst. Fourier (Grenoble) 22(1), 287–334 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hughen, K.: The geometry of sub-Riemannian three-manifolds. Ph.D. Dissertation (1995)

  27. Jacquet, S.: Regularity of the sub-Riemannian distance and cut locus. In: Nonlinear control in the year 2000. Lecture Notes in Control and Inform Sci., 258, vol. 1, pp. 521–533. Springer, London (2001)

  28. Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. Int. Math. Res. Not. IMRN 13, 2347–2373 (2009)

    Google Scholar 

  29. Kantorovich, L.: On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)

  30. Levin, J.J.: On the matrix Riccati equation. Proc. Am. Math. Soc. 10, 519–524 (1959)

    Article  MATH  Google Scholar 

  31. Li, C.B., Zelenko, I.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differ. Geom. Appl. 27(6), 723–742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, C.B., Zelenko, I.: Parametrized curves in Lagrange Grassmannians. C. R. Acad. Sci. Paris Ser. I 345(11), 647–652

  33. Li, C.B., Zelenko, I.: Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries. J. Geom. Phys. 61, 781–807 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lott, J., Villani, C.: Weak curvature conditions and functional inequalities. J. Funct. Anal. 245(1), 311–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. McCann, R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11, 589–608 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. In: Mathematical Surveys and Monographs, vol 91. American Mathematical Society, Providence, RI (2002)

  39. Ohta, S.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82(4), 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ohta, S.: Finsler interpolation inequalities. Calc. Var. Part. Differ. Equ. 36(2), 211–249 (2009)

    Article  MATH  Google Scholar 

  41. O’neill, B.: Pure and Applied Mathematics. Semi-Riemannian geometry. With applications to relativity, 103rd edn. Academic Press Inc, New York (1983)

    Google Scholar 

  42. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rumin, M.: Formes différentielles sur les variétés de contact. J. Differ. Geom. 39(2), 281–330 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Sturm, K.T.: On the geometry of metric measure spaces II. Acta Math. 196(1), 65–131 (2006). (133–177)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sturm, K.T., von Renesse, M.K.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math. 58, 923–940 (2005)

    Article  MATH  Google Scholar 

  46. Villani, C.: Grundlehren der mathematischen Wissenschaften. Optimal transport: old and new, 338th edn. Springer-Verlag, Berlin (2009)

    Google Scholar 

  47. von Renesse, M.-K.: On local Poincaré via transportation. Math. Z. 259(1), 21–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Igor Zelenko and Cheng-Bo Li for very interesting and stimulating discussions. This work is part of the PhD thesis of the second author. He would like to express deep gratitude to his supervisor, Boris Khesin, for his continuous support. He would like to thank Professor Karl-Theodor Sturm for the fruitful discussions. He is also grateful to SISSA for their kind hospitality where part of this work is done. Finally, we would also like to thank the referees for providing many constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Y. Lee.

Additional information

The first author was partially supported by PRIN and the second author was supported by NSERC postgraduate scholarship and postdoctoral fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrachev, A., Lee, P.W.Y. Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds. Math. Ann. 360, 209–253 (2014). https://doi.org/10.1007/s00208-014-1034-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1034-6

Navigation