Skip to main content
Log in

Webs and quantum skew Howe duality

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give a diagrammatic presentation in terms of generators and relations of the representation category of \(U_q({\mathfrak {sl}}_n) \). More precisely, we produce all the relations among \(\mathrm{{SL}}_n\)-webs, thus describing the full subcategory \(\otimes \)-generated by fundamental representations \({\textstyle \bigwedge ^{k}_{}} {\mathbb C}^n\) (this subcategory can be idempotent completed to recover the entire representation category). Our result answers a question posed by Kuperberg in Commun Math Phys 180(1):109–151, (1996) and affirms conjectures of Kim in Graphical calculus on representations of quantum lie algebras, Ph. D. thesis, University of California, Davis, (2003) and Morrison in A Diagrammatic Category for the Representation Theory of \(U_q\left( {\mathfrak {sl}}_n\right) \). PhD thesis, University of California, Berkeley, (2007). Our main tool is an application of quantum skew Howe duality. This is the published version of arXiv:1210.6437.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The fullness of \(\Gamma _n\) was proven in Proposition 3.5.8 of [15] using Schur-Weyl duality instead of skew Howe duality, but the argument is essentially the same.

References

  1. Berenstein, A., Zwicknagl, S.: Braided symmetric and exterior algebras. Trans. Am. Math. Soc. 360(7), 3429–3472 (2008). doi:10.1090/S0002-9947-08-04373-0. (arXiv:math/0504155)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cautis, S., Kamnitzer, J.: Categorical geometric skew Howe duality. Invent. Math. 180(1), 111–159 (2010). doi:10.1007/s00222-009-0227-1. (arXiv:0902.1795)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\)-categorification. Ann. Math. (2) 167(1), 245–298 (2008). doi:10.4007/annals.2008.167.245. (arXiv:math/0407205)

  4. Doty, S.: Presenting generalized \(q\)-Schur algebras. Represent. Theory 7, 196–213 (electronic) (2003). doi:10.1090/S1088-4165-03-00176-6. (arXiv:math/0305208)

  5. Grant, J.: The moduli problem of Lobb and Zentner and the coloured sl(n) graph invariant (2012) (arXiv:1212.4511)

  6. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313(2), 539–570 (1989). doi:10.2307/2001418

    Article  MathSciNet  MATH  Google Scholar 

  7. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: The Schur lectures (1992) (Tel Aviv), volume 8 of Israel Math. Conf. Proc. pp. 1–182. Bar-Ilan Univ., Ramat Gan (1995)

  8. Jeong, M.-J., Kim, D.: The quantum \({\mathfrak{sl}}(n,{\mathbb{C}})\) representation theory and its applications. J. Korean Math. Soc. 49(5), 993–1015 (2012). doi: 10.4134/JKMS.2012.49.5.993. (arXiv:math/0506403)

    Article  MathSciNet  MATH  Google Scholar 

  9. Khovanov, M.: sl(3) link homology. Algebr. Geom. Topol. 4, 1045–1081 (2004). doi:10.2140/agt.2004.4.1045. (arXiv:math.QA/0304375)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, D.: Graphical calculus on representations of quantum lie algebras, Ph. D. thesis, University of California, Davis (2003) (arXiv:math.QA/0310143)

  11. Khovanov, M., Lauda, A.D.: A categorification of quantum \({\text{ sl }}(n)\). Quantum Topol. 1(1), 1–92 (2010). doi: 10.4171/QT/1. (arXiv:0807.3250)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuperberg, G.: Spiders for rank 2 Lie algebras. Comm. Math. Phys. 180(1), 109–151 (1996). arXiv:q-alg/9712003. http://projecteuclid.org/euclid.cmp/euclid.cmp/1104287237

  13. Lauda, A., Rose, D., Queffelec, H.: Khovanov homology is a skew Howe 2-representation of categorified quantum \({\mathfrak{sl}}_m\). (arXiv:1212.6076)

  14. Lusztig, G.: Introduction to quantum groups. In: Progress in Mathematics, vol. 110. Birkhäuser Boston Inc., Boston (1993). doi:10.1007/978-0-8176-4717-9

  15. Morrison, S.: A Diagrammatic Category for the Representation Theory of \(U_q\left({\mathfrak{sl}}_n\right)\). PhD thesis, University of California, Berkeley (2007) (arXiv:0704.1503)

  16. Murakami, H., Ohtsuki, T., Yamada, S.: Homfly polynomial via an invariant of colored plane graphs. Enseign. Math (2) 44(3–4), 325–360 (1998)

    Google Scholar 

  17. Morrison, S., Peters, E., Snyder, N.: Knot polynomial identities and quantum group coincidences. Quantum Topol. 2(2), 101–156 (2011). doi:10.4171/QT/16. (arXiv:0022.1003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mackaay, M., Pan, W., Tubbenhauer, D.: The \({\mathfrak{sl}}_3\) web algebra (2012) (arXiv:1206.2118)

  19. Mackaay, M., Stošić, M., Vaz, P.: \({\mathfrak{sl}}(N)\)-link homology \((N \ge 4)\) using foams and the Kapustin-Li formula. Geom. Topol. 13(2), 1075–1128 (2009). doi: 10.2140/gt.2009.13.1075. (arXiv:0708.2228)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rouquier, R.: 2-Kac-Moody algebras (2008) (arXiv:0812.5023)

  21. Sikora, A.S.: Skein theory for SU(\(n\))-quantum invariants. Algebr. Geom. Topol. 5, 865–897 (electronic) (2005). doi:10.2140/agt.2005.5.865. arXiv:math.QA/0407299

  22. Laredo, V.T.: A Kohno-Drinfeld theorem for quantum Weyl groups. Duke Math. J. 112(3), 421–451 (2002). doi:10.1215/S0012-9074-02-11232-0. (arXiv:math/0009181)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors benefited from discussions with Arkady Berenstein, Bruce Fontaine, Stavros Garoufalidis, Greg Kuperberg, Valerio Toledano Laredo and Sebastian Zwicknagl. We would like to thank Dongho Moon who pointed out that the relation of Equation (2.8) was missing in the first 3 versions posted on the arXiv! S.C. was supported by NSF grant DMS-1101439 and the Alfred P. Sloan foundation, S.M. was supported by the Australian Research Council grant DE120100232 and by DOD-DARPA HR0011-12-1-0009, J.K. was supported by NSERC. We would also like to thank VIA Rail for providing the venue where much of this research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Morrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cautis, S., Kamnitzer, J. & Morrison, S. Webs and quantum skew Howe duality. Math. Ann. 360, 351–390 (2014). https://doi.org/10.1007/s00208-013-0984-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0984-4

Navigation