Skip to main content
Log in

A geometric criterion for the boundedness of characteristic classes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that for a connected Lie group G, the linearity of its radical \({\sqrt G}\) (that is of its biggest connected normal solvable subgroup), is a necessary and sufficient condition for the boundedness of all Borel cohomology classes of G with integer coefficients, and that the linearity of \({\sqrt G}\) is also equivalent to a large-scale geometric property of G (involving distortion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj S., Skandalis G., Vaes S.: Measurable Kac cohomology for bicrossed products. Trans. Amer. Math. Soc. 357(4), 1497–1524 (2005) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanc P.: Sur la cohomologie continue des groupes localement compacts. Ann. Sci. École Norm. Sup. (4) 12(2), 137–168 (1979) (French)

    MathSciNet  Google Scholar 

  3. Borel A.: Compact Clifford-Klein forms of symmetric spaces. Topology 2, 111–122 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borel A.: Topics in the homology theory of fibre bundles, Lectures given at the University of Chicago, vol. 1954. Springer, Berlin (1967)

    Google Scholar 

  5. Bourbaki, N.: Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, Paris, (French) (1963)

  6. Breuillard, E.: Geometry of groups of polynomial growth and shape of large balls, http://aps.arxiv.org/abs/0704.0095

  7. Browder W.: Homology and homotopy of H-spaces. Proc. Nat. Acad. Sci. USA 46, 543–545 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bucher-Karlsson, M.: Characteristic Classes and Bounded Cohomology. Swiss Federal Institute of Technology, Zürich, thesis Nr. 15636 (2004)

  9. Bucher-Karlsson M.: Finiteness properties of characteristic classes of flat bundles. Enseign. Math. (2) 53(1–2), 33–66 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Burger M., Iozzi A., Wienhard A.: Alessandra Iozzi, and Anna Wienhard, Surface group representations with maximal Toledo invariant. Ann. Math. 172(1), 517–566 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chatterji I., Pittet C., Saloff-Coste L.: Connected Lie groups and property RD. Duke Math. J. 137(3), 511–536 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chevalley, C.: Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie, Actualités Sci. Ind. no. 1226, Hermann & Cie, Paris (French) (1955)

  13. de Cornulier, Y.: Private communication

  14. Gersten S.M.: Bounded cocycles and combings of groups. Int. J. Algebra Comput. 2(3), 307–326 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldman W.M.: Flat bundles with solvable holonomy. II. Obstruction theory. Proc. Amer. Math. Soc. 83(1), 175–178 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gotô M.: Faithful representations of Lie groups. II . Nagoya Math J. 1, 91–107 (1950)

    MathSciNet  Google Scholar 

  17. Gromov, M. Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (56): 5–99 (1983)

    Google Scholar 

  18. Gromov M.: Asymptotic invariants of infinite groups, Geometric group theory, vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, pp. 1–295. Cambridge Univ. Press, Cambridge (1993)

    Google Scholar 

  19. Grothendieck, A.: Classes de Chern et représentations linéaires des groupes discrets. Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, pp. 215–305 (French) (1968)

  20. Guichardet, A.: Cohomologie des groupes topologiques et des algébres de Lie, Textes Mathématiques (Mathematical Texts), vol. 2, CEDIC, Paris, (French) (1980)

  21. Halmos, P.R.: Measure Theory. D. Van Nostrand Company, Inc., New York (1950)

  22. Hochschild G.: The Structure of Lie Groups. Holden-Day Inc., San Francisco (1965)

    MATH  Google Scholar 

  23. Hochschild G.: The universal representation kernel of a Lie group. Proc. Am. Math. Soc. 11, 625–629 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kehlet E.T.: Cross sections for quotient maps of locally compact groups. Math. Scand. 55(1), 152–160 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Hoon Lee D., Sun Wu T.: On prealgebraic groups. Math. Ann. 269(2), 279–286 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Malcev A.: On linear Lie groups. C. R. (Doklady) Acad. Sci. URSS (N. S.) 40, 87–89 (1943)

    MathSciNet  MATH  Google Scholar 

  27. Mimura, M., Toda, H.: Topology of Lie groups. I, II, Translations of Mathematical Monographs, vol. 91, (Translated from the 1978 Japanese edition by the authors). American Mathematical Society, Providence (1991)

  28. Monod N.: Continuous bounded cohomology of locally compact groups. Lecture Notes in Mathematics, vol. 1758. Springer, Berlin (2001)

    Book  Google Scholar 

  29. Moore C.C.: Extensions and low dimensional cohomology theory of locally compact groups. I, II. Trans. Am. Math. Soc. 113, 40–63 (1964)

    MATH  Google Scholar 

  30. Moore C.C.: Group extensions and cohomology for locally compact groups. III. Trans. Am. Math. Soc. 221(1), 1–33 (1976)

    Article  MATH  Google Scholar 

  31. Moore C.C.: Group extensions and cohomology for locally compact groups. IV. Trans. Am. Math. Soc. 221(1), 35–58 (1976)

    Article  MATH  Google Scholar 

  32. Onishchik, A.L., Vinberg, È.B.: Lie groups and algebraic groups, Springer Series in Soviet Mathematics, (Translated from the Russian and with a preface by D. A. Leites). Springer, Berlin, 1990

  33. Osin D.V.: Subgroup distortions in nilpotent groups. Comm. Algebra 29(12), 5439–5463 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pittet C.: Isoperimetric inequalities in nilpotent groups. J. London Math. Soc. (2) 55(3), 588–600 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vinberg, È.B., (ed.): Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer, Berlin. (Structure of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [ MR1056485 (91b:22001)]; Translation by V. Minachin [V. V. Minakhin]; Translation edited by A. L. Onishchik and È. B. Vinberg) (1994)

  36. Wigner D.: Algebraic cohomology of topological groups. Trans. Am. Math. Soc. 178, 83–93 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zimmer R.J.: Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81. Birkhäuser Verlag, Basel (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Pittet.

Additional information

I. Chatterji is partially supported by the NSF grant No. 0644613 and the ANR grant JC-318197 QuantiT.

C. Pittet is partially supported by the CNRS, déc. no 080026DRH. L. Saloff-Coste is partially supported by NSF grants DMS-0603886 and DMS-1004771.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterji, I., Mislin, G., Pittet, C. et al. A geometric criterion for the boundedness of characteristic classes. Math. Ann. 351, 541–569 (2011). https://doi.org/10.1007/s00208-010-0610-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0610-7

Mathematics Subject Classification (2000)

Navigation