Skip to main content
Log in

Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL analysis revealed two interacting loci, FS1.2 and FS2.1, underlying round fruit shape in WI7239 cucumber; CsSUN , a homolog of tomato fruit shape gene SUN , was a candidate for FS1.2.

Abstract

Fruit size is an important quality and yield trait in cucumber, but its genetic basis remains poorly understood. Here we reported QTL mapping results on fruit size with segregating populations derived from the cross between WI7238 (long fruit) and WI7239 (round fruit) inbred cucumber lines. Phenotypic data of fruit length and diameter were collected at anthesis, immature and mature fruit stages in four environments. Ten major-effect QTL were detected for six traits; synthesis of information from these QTL supported two genes, FS1.2 and FS2.1, underlying fruit size variation in the examined populations. Under the two-gene model, deviation from expected segregation ratio in fruit length and diameter among segregating populations was observed, which could be explained mainly by the interactions between FS1.2 and FS2.1, and segregation distortion in the FS2.1 region. Genome-wide candidate gene search identified CsSUN, a homolog of the tomato fruit shape gene SUN, as the candidate for FS1.2. The round-fruited WI7239 had a 161-bp deletion in the first exon of CsSUN, and its expression in WI7239 was significantly lower than that in WI7238. A marker derived from this deletion was mapped at the peak location of FS1.2 in QTL analysis. Comparative analysis suggested the melon gene CmSUN-14, a homolog of CsSUN as a candidate of the fl2/fd2/fw2 QTL in melon. This study revealed the unique genetic architecture of round fruit shape in WI7239 cucumber. It also highlights the power of QTL analysis for traits with a simple genetic basis but their expression is complicated by other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso-Cantabrana A, Ripoll JJ, Ochando I, Vera A, Ferrandiz C, Martinez-Laborda A (2007) Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Development 134:2663–2671

    Article  CAS  PubMed  Google Scholar 

  • Ando K, Carr KM, Grumet R (2012) Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genom 13:518

    Article  CAS  Google Scholar 

  • Azzi L, Deluche C, Gévaudant F, Frangne NF, Delmas F, Hernould M, Chevalier C (2015) Fruit growth-related genes in tomato. J Expt Bot 66:1075–1086

    Article  CAS  Google Scholar 

  • Bo KL, Ma Z, Chen JF, Weng Y (2014) Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. Xishuangbannanesis Qi et Yuan). Theor Appl Genet 128:25–39

    Article  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Candolle AD (1959) Origin of cultivated plants. Hafner Publishing, New York

    Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569

    Article  Google Scholar 

  • Cheng ZC, Gu XF, Zhang SP, Miao H, Zhang RW, Liu MM, Yang SJ (2010) QTL mapping of fruit length in cucumber. China Veg Issue 12:20–25 (in Chinese)

    Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Yu JQ (2010) Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber. Plant Biol (Stuttg) 12:98–107

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Gao D, Xiao H, van der Knaap E (2009) Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. Plant J 60:181–193

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Yan SS, Yang WC, Li YQ, Xia MX, Chen ZJ, Wang Q et al (2015) Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Sci Rep 5:8031

    Article  PubMed  Google Scholar 

  • Kennard WC, Havey MJ (1995) Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating design variation. Theor Appl Genet 91:53–61

    PubMed  Google Scholar 

  • Li YH, Yang LM, Pathak M, Li DW, He XM, Weng Y (2011a) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983

    Article  PubMed  Google Scholar 

  • Li DW, Cuevas H, Yang LM, Li YH, Garcia-Mas J, Zalapa J, Staub JE, Luan FS, Reddy U, He XM, Gong ZH, Weng Y (2011b) Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genom 12:396

    Article  CAS  Google Scholar 

  • Li S, Pan YP, Wen CL, Li YH, Liu XF, Zhang XL, Behera TK, Xing GM, Weng Y (2016) Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber. Theor Appl Genet 129:1007–1022

    Article  PubMed  Google Scholar 

  • Liu HQ, Meng HW, Pan YP, Liang XJ, Jiao JQ, Li YH, Chen SX, Cheng ZH (2015) Fine genetic mapping of the white immature fruit color gene w to a 33.0-kb region in cucumber (Cucumis sativus L.). Theor Appl Genet 128:2375–2385

    Article  CAS  PubMed  Google Scholar 

  • Liu HQ, Jiao JQ, Liang XJ, Liu J, Meng HW, Chen SX, Li YH, Cheng ZH (2016) Map-based cloning, identification and characterization of the w gene controlling white immature fruit color in cucumber (Cucumis sativus L.). Theor Appl Genet 129:1247–1256

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW et al (2011) Mapping QTL for fruit-associated traits in Cucumis sativus L. Sci Agric Sinica 44:5031–5040

    Google Scholar 

  • Monforte AJ, Diaz AI, Cano-Delgado A, van de Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard L (2009) Don’t ‘leaf’ now, the making of a fruit. Curr Opin Plant Biol 12:36–41

    Article  CAS  PubMed  Google Scholar 

  • Pan YP, Bo KL, Cheng ZH, Weng Y (2015) The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol 15:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Paris HS, Daunay MC, Janick J (2012) Occidental diffusion of cucumber (Cucumis sativus) 500-1300 CE, two routes to Europe. Ann Bot 109:117–126

    Article  PubMed  Google Scholar 

  • Pelaz S, Tapia-Lopez S, Alvarez-Buylla ER, Yanofsky MF (2001) Conversion of leaves into petals in Arabidopsis. Curr Biol 11:182–184

    Article  CAS  PubMed  Google Scholar 

  • Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi CZ (1983) A new type of cucumber, Cucumis sativus L. var. xishuangbannanesis Qi et Yuan. Acta Hort Sinica 10:259–263 (in Chinese)

    Google Scholar 

  • Qu SP, Pan YP, Weng Y (2014) QTL Mapping of flowering time and fruit shape in Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Proc Cucurbitaceae 2014:54–56

    Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan JY, Tao QY, Niu HH, Zhang Z, Li DD, Gong ZH, Weng Y, Li Z (2015) A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.). Theor Appl Genet 128:2483–2493

    Article  CAS  PubMed  Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E et al (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu Y, Duan C, Chen P, Li Q, Dai S et al (2012) The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber. J Plant Physiol 169:1874–1882

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Liu SL, Zhang SP, Miao H, Wang Y, Tian GL, Lu HW, Gu XF (2014) Quantitative trait loci associated with fruit length and stalk length in cucumber using RIL population. Act Bot Boreal-Occident Sinica 34:1764–1770

    CAS  Google Scholar 

  • Wang YH, VandenLangenberg K, Wehner TC, Kraan PAG, Suelmann J, Zheng XY, Owens K, Weng YQ (2016) QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Weetman LM (1935) Correlation of shape of fruits, cotyledons, and seeds in melons. Bot Gaz 97:388–398

    Article  Google Scholar 

  • Wei QZ, Wang YZ, Qin XD, Zhang YX, Zhang ZT, Wang J, Li J, Lou QF, Chen JF (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genom 15:1158

    Article  Google Scholar 

  • Wei QZ, Fu WY, Wang YZ, Qin XD, Wang J, Li J, Lou QF, Chen KF (2015) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Report 6:27496

    Article  Google Scholar 

  • Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R (2015) QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet 128:1747–1763

    Article  CAS  PubMed  Google Scholar 

  • Whitaker TW, Davis GN (1962) The Cucurbits: botany, cultivation and utilization. Interscience Publishers, New York, NY, p 250

    Google Scholar 

  • Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E (2011) SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Clevenger JP, Sun L, Visa S, Kamiya Y, Jikumaru Y, Blakeslee J, van der Knaap E (2015) The control of tomato fruit elongation orchestrated by sun, ovate and fs8.1 in a wild relative of tomato. Plant Sci 238:95–104

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Yang LM, Koo DH, Li Y, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed from high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ (2013) Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. J Exp Bot 64:4541–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LM, Koo D-H, Li DW, Zhang T, Jiang JM, Luan FS, Renner SS, Hénaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen JF, Weng Y (2014) Next-generation sequencing, FISH mapping, and synteny-based modeling reveal mechanisms of dysploid chromosome reduction in Cucumis. Plant J 77:16–30

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Pan J, Cai R, Guan Y, Liu L, Zhang W, Li Z, He H, Zhang C, Si L, Zhu L (2008) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    Article  CAS  Google Scholar 

  • Zhu WY, Huang L, Chen L, Yang JT et al (2016) A High-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front. Plant Sci 7:437

    Google Scholar 

Download references

Acknowledgements

The authors thank Kristin Haider for technical help. YP’s work in YW’s lab was partially funded by the China Scholarship Council. This research was supported by the USDA-CRIS project 3655-21000-048-00D and a U.S. Department of Agriculture (USDA)-Specialty Crop Research Initiative Grant (SCRI, project # 2011-51181-30661) to YW. The project was also supported by the National Key R&D Project, China (2016YFD0101705) to ZC. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiqun Weng or Zhihui Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by S. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Liang, X., Gao, M. et al. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130, 573–586 (2017). https://doi.org/10.1007/s00122-016-2836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2836-6

Keywords

Navigation