Skip to main content
Log in

Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Genetically stable deletion lines of Agropyron cristatum chromosome 6P in common wheat background were generated, which allowed for physical mapping of 255 6P-specific STS markers and leaf rust resistance gene(s).

Abstract

Chromosomal deletion lines are valuable tools for gene discovery and localization. The chromosome 6P of Agropyron cristatum (2n = 4x = 28, PPPP) confers many desirable agronomic traits to common wheat, such as higher grain number per spike, multiple fertile tiller number, and enhanced resistance to certain diseases. Although many elite genes from A. cristatum have been identified, their chromosomal locations were largely undetermined due to the lack of A. cristatum 6P deletion lines. In this study, various A. cristatum 6P deletion lines were developed using a wheat–A. cristatum 6P disomic addition line 4844-12 subjected to 60Co-γ irradiation as well as an Aegilops cylindrica gametocidal chromosome. Twenty-six genetically stable A. cristatum 6P deletion lines in the genetic background of common wheat were obtained, and their genetic constitutions were elucidated by genomic in situ hybridization (GISH) and sequence-tagged site (STS) markers specific to A. cristatum chromosome 6P. Moreover, 255 novel chromosome 6P-specific STS markers were physically mapped to 14 regions of chromosome 6P. Field evaluation of leaf rust resistance of various deletion lines and BC1F2 populations indicated that the A.cristatum chromosome 6P-originated leaf rust resistance gene(s) was located in the region 6PS-0.81-1.00. This study will provide not only useful tools for characterization and utilization of wheat materials with alien chromosomal segments, but also novel wheat germplasms potentially valuable in wheat breeding and improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, Wettstein-Knowles P, Uauy C (2013) The Inhibitor of wax 1 locus (Iw1) prevents formation of β-and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J 74:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashida T, Nasuda S, Sato K, Endo TR (2007) Dissection of barley chromosome 5H in common wheat. Genes Genet Syst 82:123–133

    Article  CAS  PubMed  Google Scholar 

  • Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan C, Rudd JC (2014) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol breed 33:385–399

    Article  CAS  Google Scholar 

  • Belova T, Grønvold L, Kumar A, Kianian S, He XY, Lillemo M, Springer NM, Lien S, Olsen O-A, Sandve SR (2014) Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome. Theor Appl Genet 127:2029–2040

    Article  CAS  PubMed  Google Scholar 

  • Chen XM, Line RF (1992) Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of Puccinia striiformis in North America. Phytopathology 82:633–637

    Article  Google Scholar 

  • Chen XM, Line RF (1995) Gene action in wheat cultivars for durable, high-temperature, adult-plant resistance and interaction with race-specific, seedling resistance to Puccinia striiformis. Phytopathology 85:567–572

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum Press, New York, pp 209–279

    Chapter  Google Scholar 

  • Dong YC, Zhou RH, Xu SJ, Li LH, Cauderon Y, Wang RRC (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:175–178

    Article  Google Scholar 

  • Dundas IS, Frappell DE, Crack DM, Fisher JM (2001) Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Sci 41:1771–1778

    Article  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Friebe B, Kynast RG, Gill BS (2000) Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chromosome Res 8:501–511

    Article  CAS  PubMed  Google Scholar 

  • Fu BS, Chen Y, Li N, Ma HQ, Kong ZX, Zhang LX, Jia HY, Ma ZQ (2013) pmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet 126:913–921

    Article  CAS  PubMed  Google Scholar 

  • Gustafson G, Shaner G (1982) Influence of plant age on the expression of slow-mildewing resistance in wheat. Phytopathology 72:746–749

    Article  Google Scholar 

  • Han HM, Bai L, Su JJ, Zhang JP, Song LQ, Gao AN, Yang XM, Li XQ, Liu WH, Li LH (2014) Genetic rearrangements of six wheat–Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS One 9:e91066

    Article  PubMed  PubMed Central  Google Scholar 

  • Han HM, Zhang YX, Liu WH, Hu ZM, Li LH (2015) Degenerate oligonucleotide primed-polymerase chain reaction-based chromosome painting of P genome chromosomes in Agropyron cristatum and wheat–A. cristatum addition lines. Crop Sci 55:1–8

    Article  Google Scholar 

  • Hautea RA, Coffman WR, Sorrells ME, Bergstrom GC (1987) Inheritance of partial resistance to powdery mildew in spring wheat. Theor Appl Genet 73:609–615

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccars L, Calvo-Salazar V, Lan C, Lagudah ES (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486

    Article  CAS  PubMed  Google Scholar 

  • Hossain KG, Jackson SA, Kianian SF (2012) Genome structure and chromosome function. In: Bass HW, Birchler JA (eds) Plant cytogenetics. Springer, pp 37–58

  • Huang XQ, Röder MS (2011) High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region. Genetica 139:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Joshi GP, Nasuda S, Endo TR (2011) Dissection and cytological mapping of barley chromosome 2H in the genetic background of common wheat. Genes Genet Syst 86:231–248

    Article  CAS  PubMed  Google Scholar 

  • Khan MH, Bukhari A, Dar ZA, Rizvi SM (2013) Status and strategies in breeding for rust resistance in wheat. Agric Sci 4:292–301

    Google Scholar 

  • Kojima T, Habu Y, Iida S, Ogihara Y (2000) Direct isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based mRNA fingerprinting (AMF) method in combination with a deletion line of wheat. Mol Gen Genet 263:635–641

    Article  CAS  PubMed  Google Scholar 

  • Li LH, Dong YC, Zhou RH, Li XQ, Li P (1995) Cytogenetics and self-fertility of hybrids between Triticum aestivum L. and Agropyron cristatum (L.) Gaertn. Acta Genetica Sinica 22:109–114

    Google Scholar 

  • Li LH, Li XQ, Li P, Dong YC, Zhao GS (1997) Establishment of wheat–Agropyron cristatum alien addition lines. I. Cytology of F3, F2BC1, BC4, and BC3F1 progenies. Acta Genetica Sinica 24:154–159

    CAS  Google Scholar 

  • Li LH, Yang XM, Zhou Rh, Li XQ, Dong YC (1998) Establishment of wheat–Agropyron cristatum alien addition lines II. Identification of alien chromosomes and analysis of development approaches. Acta Genetica Sinica 25:538–544

    Google Scholar 

  • Ling HQ, Zhao SC, Liu DC, Wang JY et al (2013) Draft genome of the wheat A-genome progennitorr Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu WH, Luan Y, Wang JC, Wang XG, Su JJ, Zhang JP, Yang ZM, Gao AN, Li LH (2010) Production and identification of wheat–Agropyron cristatum (1·4P) alien translocation lines. Genome 53:472–481

    Article  CAS  PubMed  Google Scholar 

  • Lu YQ, Wu XY, Yao MM, Zhang JP, Liu WH, Yang XM, Li XQ, Du J, Gao AN, Li LH (2015) Genetic mapping of a putative Agropyron cristatum-derived powdery mildew resistance gene by a combination of bulked segregant analysis and single nucleotide polymorphism array. Mol Breed 35:1–13

    Article  Google Scholar 

  • Luan Y, Wang XG, Liu WH, Li CY, Zhang JP, Gao AN, Wang YD, Yang XM, Li LH (2010) Production and identification of wheat–Agropyron cristatum 6P translocation lines. Planta 232:501–510

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, East Melbourne, pp 29–82

    Book  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005a) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasuda S, Kikkawa Y, Ashida T, Islam AR, Sato K, Endo TR (2005b) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Syst 80:357–366

    Article  CAS  PubMed  Google Scholar 

  • Ochoa V, Madrid E, Said M, Rubiales D, Cabrera A (2015) Molecular and cytogenetic characterization of a common wheat–Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201:89–95

    Article  Google Scholar 

  • Pu J, Wang Q, Shen YF, Zhuang LF, Li CX, Tan MF, Bie TD, Chu CG, Qi ZJ (2015) Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theor Appl Genet 128:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75:1121–1125

    Article  Google Scholar 

  • Qi LL, Gill BS (2001) High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theor Appl Genet 103:998–1006

    Article  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raupp WJ, Friebe B, Gill BS (1995) Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat and its relatives. Wheat Inform Serv 81:50–55

    Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Sakai K, Nasuda S, Sato K, Endo TR (2009) Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps. Genes Genet Syst 84:25–34

    Article  CAS  PubMed  Google Scholar 

  • Sakata M, Nasuda S, Endo TR (2010) Dissection of barley chromosome 4H in common wheat by the gametocidal system and cytological mapping of chromosome 4H with EST markers. Genes Genet Syst 85:19–29

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Serizawa N, Nasuda S, Shi F, Endo TR, Prodanovic S, Schubert I, Künzel G (2001) Deletion-based physical mapping of barley chromosome 7H. Theor Appl Genet 103:827–834

    Article  CAS  Google Scholar 

  • Singh D, Mohler V, Park RF (2013) Discovery, characterisation and mapping of wheat leaf rust resistance gene Lr71. Euphytica 190:131–136

    Article  CAS  Google Scholar 

  • Song LQ, Jiang LL, Han HM, Gao AN, Yang XM, Li LH, Liu WH (2013) Efficient induction of wheat–Agropyron cristatum 6P translocation lines and GISH detection. PLoS One 8:e69501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Tsujimoto H (2012) Positive or negative effects on dough strength in large-scale group-1 chromosome deletion lines of common wheat (Triticum aestivum L.). Euphytica 186:57–65

    Article  CAS  Google Scholar 

  • Tsuchida M, Fukushima T, Nasuda S, Masoudi-Nejad A, Ishikawa G, Nakamura T, Endo TR (2008) Dissection of rye chromosome 1R in common wheat. Genes Genet Syst 83:43–53

    Article  CAS  PubMed  Google Scholar 

  • Vales MI, Riera-Lizarazu O, Rines HW, Phillips RL (2004) Transmission of maize chromosome 9 rearrangements in oat–maize radiation hybrids. Genome 47:1202–1210

    Article  CAS  PubMed  Google Scholar 

  • Vizir IY, Mulligan BJ (1999) Genetics of gamma-irradiation-induced mutations in Arabidopsis thaliana: large chromosomal deletions can be rescued through the fertilization of diploid eggs. J Hered 90:412–417

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang XM, Wang H, Li HJ, Li LH, Li XQ, Liu WH (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20

    Article  CAS  PubMed  Google Scholar 

  • Xie WL, Ben-David R, Zeng B, Dinoor A, Xie CJ, Sun QX, Röder MS, Fahoum A, Fahima T (2012a) Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol Breed 29:399–412

    Article  CAS  Google Scholar 

  • Xie WL, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T (2012b) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 124:911–922

    Article  CAS  PubMed  Google Scholar 

  • Xing LF, Wang CF, Xia XC, He ZH, Chen WQ, Liu TG, Li ZF, Liu DQ (2014) Molecular mapping of leaf rust resistance gene LrFun in Romanian wheat line Fundulea 900. Mol Breed 33:931–937

    Article  CAS  Google Scholar 

  • Xue SL, Xu F, Tang MZ, Zhou Y, Li GQ, An X, Lin F, Xu HB, Jia HY, Zhang LX, Kong ZX, Ma ZQ (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:1055–1063

    Article  PubMed  Google Scholar 

  • Xue SL, Xu F, Li GQ, Zhou Y, Lin MS, Gao ZX, Su XH, Xu XW, Jiang G, Zhang S, Jia HY, Kong ZX, Zhang LX, Ma ZQ (2013) Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet 126:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Ye XL, Lu YQ, Liu WH, Chen GY, Han HM, Zhang JP, Yang XM, Li XQ, Gao AN, Li LH (2015) The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat–Agropyron cristatum chromosome 5A/6P translocation lines. Theor Appl Genet 128:797–811

    Article  PubMed  Google Scholar 

  • Zhang W, Zhang RQ, Feng YQ, Bie TD, Chen PD (2013) Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Chin Sci Bull 58:890–897

    Article  CAS  Google Scholar 

  • Zhang JP, Liu WH, Han HM, Song LQ, Bai L, Gao ZH, Zhang Y, Yang XM, Li XQ, Gao AN, Li LH (2015a) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106:129–136

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang JP, Liu WH, Han HM, Lu YQ, Yang XM, Li XQ, Li LH (2015b) Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet 128:1827–1837

    Article  PubMed  Google Scholar 

  • Zhao PP, Meng QF, Guo N, Zhang LY, Yan HF, Liu DQ (2013) Analysis of virulence patterns of Puccinia triticina in Henan province in 2009–2011. J Henan Agric Sci 42:91–94

    Google Scholar 

  • Zhou Y, Ren Y, Lillemo M, Yao ZJ, Zhang PP, Xia XC, He ZH, Li ZF, Liu DQ (2014) QTL mapping of adult-plant resistance to leaf rust in a RIL population derived from a cross of wheat cultivars Shanghai 3/Catbird and Naxos. Theor Appl Genet 127(9):1873–1883

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National High Technology Research and Development Program of China (the 863 program, No. 2011AA100102 and No. 2011AA100101), the National Basic Research Program of China (the 973 program, No. 2011CB100104), and the National Natural Science Foundation of China (No. 31271714).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Liu or Lihui Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by S. S. Xu.

L. Song and Y. Lu contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Lu, Y., Zhang, J. et al. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet 129, 1023–1034 (2016). https://doi.org/10.1007/s00122-016-2680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2680-8

Keywords

Navigation