Skip to main content

Advertisement

Log in

A major quantitative trait locus conferring subgynoecy in cucumber

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A major QTL conditioning high degree of femaleness in cucumber was identified by marker analysis and next generation sequencing.

Abstract

Cucumber (Cucumis sativus L.) is a model species for sex determination studies, and its yield is associated with the degree of femaleness. Subgynoecy represents a sex form with a high degree of femaleness for which the genetic basis remains elusive. In this study, genetic analysis in the F2 and BC1 populations developed from a cross between subgynoecious S-2-98 and monoecious M95 suggested a quantitative nature of subgynoecy. Application of simple sequence repeat markers between subgynoecious and monoecious bulks constructed from BC1 plants identified three QTLs: sg3.1, sg6.1, and sg6.2. The major QTL sg3.1 contributed to 54.6 % of the phenotypic variation, and its presence was confirmed by genome-wide comparison of SNP profiles between parental lines and a subgynoecious bulk constructed from BC6 plants. Using PCR-based markers developed from the SNP profile, sg3.1 was further delimited to a genomic region of 799 kb. The genetic basis of subgynoecy revealed here shall shed light on the development of elite cultivars with high yield potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotech 30:174–178

    Article  CAS  Google Scholar 

  • Byers R, Baker L, Sell H, Herner R, Dilley D (1972) Ethylene: a natural regulator of sex expression of Cucumis melo L. Proc Natl Acad Sci USA 69:717–720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen H, Tian Y, Lu X, Liu X (2011) The inheritance of two novel subgynoecious genes in cucumber (Cucumis sativus L.). Sci Hortic 127:464–467

    Article  CAS  Google Scholar 

  • Dorca Fornell C, Gregis V, Grandi V, Coupland G, Colombo L, Kater MM (2011) The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. Plant J 67:1006–1017

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Fazio G, Staub J, Stevens M (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  PubMed  CAS  Google Scholar 

  • Galun E (1962) Study of the inheritance of sex expression in the cucumber. The interaction of major genes with modifying genetic and non-genetic factors. Genetica 32:134–163

    Article  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jofuku KD, Den Boer B, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Knopf RR, Trebitsh T (2006) The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol 47:1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Kubicki B (1969) Investigations on sex determination in cucumber (Cucumis sativus L.). Genet Pol. 10:5–143

    Google Scholar 

  • Kubicki B (1974) New sex types in cucumber and their uses in breeding work. In: Able ST (ed), XIX International Horticultural Congress 1974 September 11–18 Warszawa, pp 475–485

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Lee S-Y, Hwang EY, Seok H-Y, Tarte VN, Jeong MS, Jang SB, Moon Y-H (2015) Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep 34:223–231

    Article  PubMed  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Z, Pan J, Guan Y, Tao Q, He H, Si L, Cai R (2008) Development and fine mapping of three co-dominant SCAR markers linked to the M/m gene in the cucumber plant (Cucumis sativus L.). Theor Appl Genet 117:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Huang S, Liu S, Pan J, Zhang Z, Tao Q, Shi Q, Jia Z, Zhang W, Chen H (2009) Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381–1385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Malepszy S, Niemirowicz-Szczytt K (1991) Sex determination in cucumber (Cucumis sativus L.) as a model system for molecular biology. Plant Sci 80:39–47

    Article  Google Scholar 

  • Mibus H, Tatlioglu T (2004) Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theor Appl Genet 109:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Papadopoulou E, Little HA, Hammar SA, Grumet R (2005) Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex Plant Reprod 18:131–142

    Article  CAS  Google Scholar 

  • Perl-Treves R (1999) Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus. Bios Scientific Publishers, Oxford, pp 189–215

    Google Scholar 

  • Pitrat M (1994) Gene list for Cucumis melo L. Cucurbit Genetic Coop Report 17:135–147

    Google Scholar 

  • Rudich J, Halevy A, Kedar N (1972) Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol 49:998–999

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saito S, Fujii N, Miyazawa Y, Yamasaki S, Matsuura S, Mizusawa H, Fujita Y, Takahashi H (2007) Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. J Exp Bot 58:2897–2907

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Bioph Res Co 290:998–1009

    Article  CAS  Google Scholar 

  • Salman-Minkov A, Levi A, Wolf S, Trebitsh T (2008) ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin. Plant Cell Physiol 49:740–750

    Article  PubMed  CAS  Google Scholar 

  • Shiber A, Gaur R, Rimon-Knopf R, Zelcer A, Trebitsh T, Pitrat M (2008) The origin and mode of function of the female locus in cucumber. Cucurbitaceae 2008:263–270

    Google Scholar 

  • Shifriss O (1961) Sex control in cucumbers. J Hered 52:5–12

    Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Jaffe M (1983) Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors. Phyton 44:81–86

    Google Scholar 

  • Trebitsh T, Rudich J, Riov J (1987) Auxin, biosynthesis of ethylene and sex expression in cucumber (Cucumis sativus). Plant Growth Regul 5:105–113

    Article  CAS  Google Scholar 

  • Trebitsh T, Staub JE, O’Neill SD (1997) Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987–995

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H (2003) Characterization of ethylene effects on sex determination in cucumber plants. Sex Plant Reprod 16:103–111

    Article  CAS  Google Scholar 

  • Yin T, Quinn JA (1995) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am J Bot 82:1537–1546

    Article  CAS  Google Scholar 

  • Yuan X, Pan J, Cai R, Guan Y, Liu L, Zhang W, Li Z, He H, Zhang C, Si L (2008) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    Article  CAS  Google Scholar 

  • Zhang Z, Mao L, Chen H, Bu F, Li G, Sun J, Li S, Sun H, Jiao C, Blakely R (2015) Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell 114:135848

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Yiqun Weng and Arjan van Zeijl for their help with revising the manuscript and Tao Lin for his help with SNP profiling. This study was funded by the National Natural Science Foundation of China (NSFC: 31225025), the National Program on Key Basic Research Projects in China (The 973 Program: 2012CB113900), the National High Tech Research Development Program in China (The 863 Program: 2010AA10A108, 2012AA100101), and the Chinese Ministry of Finance (1251610601001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanwen Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that all experiments described in this manuscript comply with the current laws in China.

Additional information

Communicated by H. J. van Eck.

F. Bu, H. Chen and Q. Shi contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, F., Chen, H., Shi, Q. et al. A major quantitative trait locus conferring subgynoecy in cucumber. Theor Appl Genet 129, 97–104 (2016). https://doi.org/10.1007/s00122-015-2612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2612-z

Keywords

Navigation