Skip to main content
Log in

Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The QGw.nau - 2D, QGw.nau - 4B and QGw.nau - 5A intervals were investigated for their effects on weight, length, width, and thickness of kernels and their differential roles in determining kernel size and shape were demonstrated.

Abstract

Grain weight (GW) contributes greatly to wheat yield and is directly related to kernel size and shape. Although over 100 quantitative trait loci (QTLs) for GW have been reported in the literatures, few have been well characterized for their association with kernel traits. In this study, three GW QTLs identified in elite cultivar ‘Nanda2419’ (‘Mentana’), including QGw.nau-2D, QGw.nau-4B and QGw.nau-5A, were investigated through near isogenic line (NIL) development and evaluation. NILs for all three QTLs and one NIL with both QGw.nau-4B and QGw.nau-5A were developed with the help of marker-assisted selection after two to three generations of backcross using cultivar ‘Wangshuibai’ as the recurrent parent. One NIL with QGw.nau-4B in the background of cultivar ‘Wenmai6’ was also obtained. In four different field trials, these NILs consistently produced heavier kernels than the recurrent parents. QGw.nau-4B showed the largest effect on GW; its presence resulted in 0.4–0.5 g increase of hundred-grain weight, depending on genetic backgrounds. QGw.nau-4B and QGw.nau-5A functioned additively in conditioning GW. These three QTL intervals showed pleiotropic effects on, or close linkage with genes for, spike length, plant height and flag leaf width, respectively, and acted differentially in determining the kernel dimensions that are the major GW determinants. They all conditioned wider kernels with QGw.nau-5A displaying the largest effect. QGw.nau-4B and QGw.nau-5A also conditioned thicker kernels but had opposite effects on kernel length. This study demonstrated that marker-assisted selection is effective for GW improvement. The availability of GW NILs could facilitate cloning of GW genes and unraveling of kernel development mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ammiraju J, Dholakia B, Santra D, Singh H, Lagu M, Tamhankar S, Dhaliwal H, Rao V, Gupta V, Ranjekar P (2001) Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102:726–732

    Article  CAS  Google Scholar 

  • Bassam B, Caetano-Anolles G, Gresshoff P (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Blair CP (1992) Factor regression for interpreting genotype environment interaction in bread wheat trial. Theor Appl Genet 83:1022–1026

    Google Scholar 

  • Botwright TL, Condon AG, Rebetzke GJ, Richards RA (2002) Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res 53:1137–1145

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat cultivars (Triticum aestivum L.). Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crop Res 101:172–179

    Article  Google Scholar 

  • Calderini D, Dreccer M, Slafer G (1995) Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends. Plant Breed 114:108–112

    Article  Google Scholar 

  • Campbell KG, Bergmem CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G et al (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Chastain TG, Ward KJ, Wysocki DJ (1995) Stand establishment responses of soft white winter wheat to seedbed residue and seed size. Crop Sci 35:213–218

    Article  Google Scholar 

  • Cui K, Peng S, Xing Y, Yu S, Xu C, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106:649–658

    CAS  PubMed  Google Scholar 

  • Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127:659–675

    Article  PubMed  Google Scholar 

  • Cuthbert J, Somers D, Brule-Babel A, Brown P, Crow G (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S (2011) Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet 122:281–289

    Article  PubMed  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS et al (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  CAS  Google Scholar 

  • Donmez E, Sears RG, Shroyer JP, Paulsen GM (2001) Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Sci 41:1412–1419

    Article  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Gupta P, Mir R, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genom. doi:10.1155/2008/896451

    Google Scholar 

  • Huang X, Coster H, Ganal M, Roder M (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Huang X, Kempf H, Ganal M, Roder M (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Cloutier S, Lycar L, Radovanovic N, Humphreys D, Noll J, Somers D, Brown P (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

    Article  CAS  PubMed  Google Scholar 

  • Ma ZQ, Sorrells ME (1995) Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35:1137–1143

    Article  CAS  Google Scholar 

  • Maphosa L, Langridge P, Taylor H, Parent B, Emebiri L, Kuchel H, Reynolds M, Chalmers K, Okada A, Edwards J, Mather D (2014) Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theor Appl Genet 127:1607–1624

    Article  PubMed  Google Scholar 

  • Mir RR, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan HS, Gupta PK (2012) Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed 29:963–972

    Article  Google Scholar 

  • Moghaddam M, Ehdaie B, Waines JG (1997) Genetic variation and interrelationships of agronomic characters in landraces of bread wheat from southeastern Iran. Euphytica 95:361–369

    Article  Google Scholar 

  • Neumann K, Kobiljsdki B, Denčić S, Varshney RK, Börner A (2011) Genome-association mapping-a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Okamoto Y, Kajimura T, Ikeda TM, Takumi S (2012) Evidence from principal component analysis for improvement of grain shape-and spikelet morphology-related traits after hexaploid wheat speciation. Genes Genet Syst 87:299–310

    Article  CAS  PubMed  Google Scholar 

  • Quarrie S, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash D, Farmer P, Saker L, Clarkson D, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M, Hollington P, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupta V (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Eb-meyer E, Bothe R, Pietsch C, Würschum T (2010) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122:961–970

    Article  PubMed  Google Scholar 

  • Röder M, Huang X, Börner A (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics 8:79–86

    Article  PubMed  Google Scholar 

  • Russo M, Ficco D, Laidò G, Marone D, Papa R, Blanco A, Gadaleta A, De Vita P, Mastrangelo A (2014) A dense durum wheat × T. dicoccum linkage map based on SNP markers for the study of seed morphology. Mol Breed 34:1579–1597

    Article  Google Scholar 

  • Rustgi S, Shafqat MN, Kumar N, Baenziger PS, Ali ML, Dweikat I, Campbell BT, Gill KS (2013) Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: bridging gaps between QTLs and underlying genes. PLoS One 8:e70526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Simmonds J, Scott P, Leverington-Waite M, Turner A, Brinton J, Korzun V, Snape J, Uauy C (2014) Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol 14:191

    Article  PubMed Central  PubMed  Google Scholar 

  • Song X, Huang W, Shi M, Zhu M, Lin H (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Su J, Zheng Q, Li H, Li B, Jing R, Tong Y, Li Z (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    Article  CAS  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Sun X, Marza F, Ma H, Carver B, Bai G (2010) Mapping quantitative trait loci for quality factors in an inter class cross of US and Chinese wheat. Theor Appl Genet 120:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Mir RR, Balyan HS, Gupta PK (2014) Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica 201:367–380

    Article  Google Scholar 

  • Underdahl J, Mergoum M, Ransom J, Schatz B (2008) Agronomic traits improvement and associations in hard red spring wheat cultivars released in North Dakota from 1968 to 2006. Crop Sci 48:158–166

    Article  Google Scholar 

  • Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Liao X, Li Y, Zhou R, Yang X, Gao L, Jia J (2010) Fine mapping a domestication-related QTL for spike-related traits in a synthetic wheat. Genome 53:798–804

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhou GL, Yu HH, Yu SB (2011) Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor Appl Genet 123:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ge H, Hao C, Dong Y, Zhang X (2012a) Identifying loci influencing 1000-Kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One 7(2):e29432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q (2012b) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    Article  CAS  PubMed  Google Scholar 

  • Williams K, Sorrells ME (2014) Three-dimensional seed size and shape QTL in hexaploid Wheat (Triticum aestivum L.) Populations. Crop Sci 54:98–110

    Article  Google Scholar 

  • Wu X, Cheng R, Xue S, Kong Z, Wan H, Li G, Huang Y, Jia H, Jia J, Zhang L, Ma Z (2014) Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed 33:129–138

    Article  CAS  Google Scholar 

  • Xiao Y, Qian Z, Wu K, Liu J, Xia X, Ji W, He Z (2012) Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Sci 52:44–56

    Article  Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhao D, Zhu H, Xu H, Wu J, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  CAS  PubMed  Google Scholar 

  • Xue S, Li G, Jia H, Lin F, Cao Y, Xu F, Tang M, Wang Y, Wu X, Zhang Z, Zhang L, Kong Z, Ma Z (2010) Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breed 15:397–405

    Article  Google Scholar 

  • Xue S, Xu F, Li G, Zhou Y, Lin M, Gao Z, Su X, Xu X, Jiang G, Zhang S, Jia H, Kong Z, Zhang L, Ma Z (2013) Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet 126:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis J, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Le Gouis J, Leflon M, Rong W, Laperche A, Brancourt-Hulmel M (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet 121:1501–1517

    Article  PubMed  Google Scholar 

  • Zhou Y, Zhu H, Cai S, He Z, Zhang X, Xia X, Zhang G (2007) Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica 157:465–473

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by ‘973’ program (2011CB100103), NSFC programs (31430064, 30025030), Seed Funds for the Central Universities (2012), ‘111’ Project B08025, and PAPD project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by S. Dreisigacker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Kong, Z., Wu, X. et al. Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theor Appl Genet 128, 2437–2445 (2015). https://doi.org/10.1007/s00122-015-2598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2598-6

Keywords

Navigation