Skip to main content
Log in

Mapping resistance to the bird cherry-oat aphid and the greenbug in wheat using sequence-based genotyping

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Identification of novel resistance QTL against wheat aphids. First QTL-resistance report for R. padi in wheat and chromosome 2DL for S. graminum . These sources have potential use in wheat breeding.

Abstract

The aphids Rhopalosiphum padi and Schizaphis graminum are important pests of common wheat (Triticum aestivum L.). Characterization of the genetic bases of resistance sources is crucial to facilitate the development of resistant wheat cultivars to these insects. We examined 140 recombinant inbred lines (RILs) from the cross of Seri M82 wheat (susceptible) with the synthetic hexaploid wheat CWI76364 (resistant). RILs were phenotyped for R. padi antibiosis and tolerance traits. Phenotyping of S. graminum resistance was based on leaf chlorosis in a greenhouse screening and the number of S. graminum/tiller in the field. RILs were also scored for pubescence. Using a sequence-based genotyping method, we located genomic regions associated with these resistance traits. A quantitative trait locus (QTL) for R. padi antibiosis (QRp.slu.4BL) that explained 10.2 % of phenotypic variation was found in chromosome 4BL and located 14.6 cM apart from the pubescence locus. We found no association between plant pubescence and the resistance traits. We found two QTLs for R. padi tolerance (QRp.slu.5AL and QRp.slu.5BL) in chromosomes 5AL and 5BL, with an epistatic interaction between a locus in chromosome 3AL (EnQRp.slu.5AL) and QRp.slu.5AL. These genomic regions explained about 35 % of the phenotypic variation. We re-mapped a previously reported gene for S. graminum resistance (putatively Gba) in 7DL and found a novel QTL associated with the number of aphids/tiller (QGb.slu-2DL) in chromosome 2DL. This is the first report on the genetic mapping of R. padi resistance in wheat and the first report where chromosome 2DL is shown to be associated with S. graminum resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berzonsky WA, Ding H, Haley SD, Harris MO, Lamb RJ, McKenzie RIH, Ohm HW, Patterson FL, Peairs FB, Porter DR, Ratcliffe RH, Shanower TG (2003) Breeding wheat for resistance to insects. Plant Breed Rev 22:221–296

    Google Scholar 

  • Blackman RL, Eastop VF (2007) Taxonomic issues. In: Van Emden HF, R. H (eds) Aphids as Crop Pests. CAB International, Oxfordshire, pp 1–29

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broman KW, Sen Ś (2009) R/qtl: QTL mapping in experimental crosses. Statistics for biology and health. Springer, New York

    Google Scholar 

  • Burd JD, Porter DR (2006) Biotypic diversity in greenbug (Hemiptera: aphididae): characterizing new virulence and host associations. J Econ Entomol 99(3):959–965

    Article  PubMed  Google Scholar 

  • Cheung WY, Di Giorgio L, Ahman I (2010) Mapping resistance to the bird cherry-oat aphid (Rhopalosiphum padi) in barley. Plant Breed 129(6):637–646. doi:10.1111/j.1439-0523.2010.01771.x

    Article  CAS  Google Scholar 

  • Crespo-Herrera LA (2012) Resistance to aphids in wheat: from a plant breeding perspective. Introductory paper at the faculty of landscape planning, horticulture and agricultural science. Swedish University of Agricultural Sciences, Alnarp, Sweden

  • Da Costa E Silva L, Wang S, Zeng Z-B (2012a) Multiple trait multiple interval mapping of quantitative trait loci from inbred line crosses. BMC Genet 13(1):67

    Article  PubMed Central  PubMed  Google Scholar 

  • Da Costa E Silva L, Wang S, Zeng Z-B (2012b) Composite interval mapping and multiple interval mapping: procedures and guidelines for using windows QTL Cartographer. In: Rifkin SA (ed) Quantitative trait loci (QTL): methods and protocols. Methods in molecular biology. Humana Press, New York, pp 75–119

    Chapter  Google Scholar 

  • Dobrovolskaya O, Pshenichnikova T, Arbuzova V, Lohwasser U, Röder M, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155(3):285–293

    Article  CAS  Google Scholar 

  • Dunn BL, Carver BF, Baker CA, Porter DR (2007) Rapid phenotypic assessment of bird cherry-oat aphid resistance in winter wheat. Plant Breed 126(3):240–243. doi:10.1111/j.1439-0523.2007.01345.x

    Article  Google Scholar 

  • Dvorak J, Zhang H-B (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci 87(24):9640–9644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi:10.1371/journal.pone.0019379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277(5326):696–699. doi:10.1126/science.277.5326.696

    Article  CAS  PubMed  Google Scholar 

  • Kieckhefer RW, Gellner JL (1992) Yield losses in winter-wheat caused by low-density cereal aphid populations. Agron J 84(2):180–183

    Article  Google Scholar 

  • Lage J, Skovmand B, Andersen SB (2003) Characterization of greenbug (Homoptera : aphididae) resistance in synthetic hexaploid wheats. J Econ Entomol 96(6):1922–1928

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175(1):361–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215. doi:10.1371/journal.pgen.1003215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, USA

  • Mackay TF (2013) Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 15:22–33

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2010) Catalogue of gene symbols for wheat. 2011 edn. http://www.shigen.nig.ac.jp/wheat/komugi/

  • Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agric Food Chem 57(5):1677–1696. doi:10.1021/jf8034034

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer HM, Copaja SV, Barria BN (1992) The Triticeae as sources of hydroxamic acids, secondary metabolites in wheat conferring resistance against aphids. Hereditas 116(3):295–299. doi:10.1111/j.1601-5223.1992.tb00158.x

    Article  CAS  Google Scholar 

  • Nomura T, Ishihara A, Imaishi H, Endo T, Ohkawa H, Iwamura H (2002) Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat. Mol Genet Genomics 267(2):210–217. doi:10.1007/s00438-002-0653-x

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Ishihara A, Imaishi H, Ohkawa H, Endo T, Iwamura H (2003) Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta 217(5):776–782. doi:10.1007/s00425-003-1040-5

    Article  CAS  PubMed  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME, Tsujimoto H (2013) Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev 37:35–122

    Google Scholar 

  • Papp M, Mesterhazy A (1993) Resistance to bird cherry-oat aphid (Rhopalosiphum padi L.) in winter wheat varieties. Euphytica 67(1–2):49–57

    Article  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253. doi:10.1371/journal.pone.0032253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porter DR, Burd JD, Shufran KA, Webster JA, Teetes GL (1997) Greenbug (Homoptera: aphididae) biotypes: selected by resistant cultivars or preadapted opportunists? J Econ Entomol 90(5):1055–1065

    Google Scholar 

  • Price T, Schluter D (1991) On the low heritability of life-history traits. Evolution 45(4):853–861

    Article  Google Scholar 

  • R core team (2013) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Reddy SK, Weng Y, Rudd JC, Akhunova A, Liu S (2013) Transcriptomics of induced defense responses to greenbug aphid feeding in near isogenic wheat lines. Plant Sci 212:26–36

    Article  CAS  PubMed  Google Scholar 

  • Riedell WE, Kieckhefer RW, Langham MAC, Hesler LS (2003) Root and shoot responses to bird cherry-oat aphids and barley yellow dwarf virus in spring wheat. Crop Sci 43(4):1380–1386

    Article  Google Scholar 

  • Roberts JJ, Foster JE (1983) Effect of leaf pubescence in wheat on the bird cherry-oat aphid (Homoptera: aphididae). J Econ Entomol 76(6):1320–1322

    Google Scholar 

  • Saintenac C, Jiang D, Wang S, Akhunov E (2013) Sequence-based mapping of the polyploid wheat genome. G3: Genes Genomes Genet 3(7):1105–1114. doi:10.1534/g3.113.005819

    Article  Google Scholar 

  • SAS Institute Inc (2011) SAS/STAT® 9.3 User’s guide. SAS Institute Inc Cary NC, USA

  • Smith CM (2005) Plant resistance to arthropods: molecular and conventional approaches. Springer, Dordrecht

    Book  Google Scholar 

  • Smith CM, Starkey S (2003) Resistance to greenbug (Heteroptera : aphididae) biotype I in Aegilops tauschii synthetic wheats. J Econ Entomol 96(5):1571–1576. doi:10.1603/0022-0493-96.5.1571

    Article  PubMed  Google Scholar 

  • Voorrips R (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Voss TS, Kieckhefer RW, Fuller BW, McLeod MJ, Beck DA (1997) Yield losses in maturing spring wheat caused by cereal aphids (Homoptera: aphididae) under laboratory conditions. J Econ Entomol 90(5):1346–1350

    Google Scholar 

  • Webster J (1990) Resistance in triticale to the Russian wheat aphid (Homoptera: aphididae). J Econ Entomol 83(3):1091–1095

    Google Scholar 

  • Webster J, Inayatullah C, Hamissou M, Mirkes K (1994) Leaf pubescence effects in wheat on yellow sugarcane aphids and greenbugs (Homoptera: aphididae). J Econ Entomol 87(1):231–240

    Google Scholar 

  • Weng Y, Lazar MD, Michels GJ, Rudd JC (2004) Phenotypic mechanisms of host resistance against greenbug (Homoptera : aphididae) revealed by near isogenic lines of wheat. J Econ Entomol 97(2):654–660

    Article  PubMed  Google Scholar 

  • Zhu LC, Smith CM, Fritz A, Boyko E, Voothuluru P, Gill BS (2005) Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theor Appl Genet 111(5):831–837. doi:10.1007/s00122-005-0003-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Monsanto´s Beachell-Borlaug International Scholars Program for financial support. We also thank Estelle Proux-Wéra (SLU) for bioinformatic support through the PlantLink Network (SLU). We thank Jorge Montoya (CIMMYT) for assistance in conducting the field trial.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of the countries in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Crespo-Herrera.

Additional information

Communicated by Susanne Dreisigacker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (JPEG 4204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo-Herrera, L.A., Akhunov, E., Garkava-Gustavsson, L. et al. Mapping resistance to the bird cherry-oat aphid and the greenbug in wheat using sequence-based genotyping. Theor Appl Genet 127, 1963–1973 (2014). https://doi.org/10.1007/s00122-014-2352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2352-5

Keywords

Navigation