Skip to main content
Log in

Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We have identified 19 QTLs for rachis architecture, a key and complex trait for grapevine production. Fifty out of 1,173 genes underlying these QTLs are candidates to be further explored.

Abstract

In the table grape industry, the rachis architecture has economic and management implications. Therefore, understanding the genetics of this trait is key for its breeding. The aim of this work was to identify genetic determinants of traits associated with the cluster architecture. Characterisations of eight traits was performed on a ‘Ruby Seedless’ × ‘Sultanina’ crossing (F1: n = 137) during three seasons, with and without gibberellic acid (GA3) applications. The genotypic effects and the genotype × GA3 interactions were significant for several traits. Rachis length (rl), lateral shoulder length and node number along the central axis were the most prominent traits. On average, the heritability of these traits was ~71 %, with heritability of rl being 76 % as estimated under different seasons. Quantitative trait loci (QTLs) analyses showed that linkage group 5 (LG5) and LG18 harboured the largest number of QTLs for these traits. According to the variance explained, the main QTL (corresponding to rl) was found on LG9. These QTLs were supported mainly by a paternal additive effect and revealed possible pleiotropic effects. Based on the grapevine reference genome, we identified 1,173 genes located under these QTL confidence intervals. Fifty of the 891 annotated genes of this list were selected for their further characterisation because of their possible participation in the rachis architecture. In conclusion, the QTLs detected indicate that these traits and their GA3 responsiveness have a clear genetic basis. Due to the percentage of the total variance explained, they are good candidates to participate in the genetic determination of the cluster architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acquaah G, Adams MW, Kelly JD (1992) A factor analysis of plant variables associated with architecture and seed size in dry bean. Euphytica 60:171–177. doi:10.1007/BF00039395

    Google Scholar 

  • Asíns MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291. doi:10.1046/j.1439-0523.2002.730285.x

    Article  Google Scholar 

  • Bates D, Maechler M (2009) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-32. http://CRAN.R-project.org. Accessed 3 March 2012

  • Bennett T, van den Toorn A, Sanchez-Pérez GF, Campilho A, Willemsen V, SneI B, Scheres B (2010) SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis. Plant Cell 3:640–654

    Article  CAS  Google Scholar 

  • Bernardo R (2004) What proportion if declared QTL in plants are false? Theor Appl Genet 109:419–424. doi:10.1007/s00122-004-1639-3

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Thomas MR (2000) Tendrils, inflorescence and fruitfulness: a molecular perspective. Aust J Grape Wine Res 6:168–174. doi:10.1111/j.1755-0238.2000.tb00176.x

    Article  Google Scholar 

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942. doi:10.1007/s00122-006-0352-9

    Article  PubMed  CAS  Google Scholar 

  • Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607. doi:10.1111/j.1469-8137.2007.02324.x

    Article  PubMed  CAS  Google Scholar 

  • Cabezas JA, Cervera MT, Ruíz-Garcia L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585. doi:10.1139/g06-122

    Article  PubMed  CAS  Google Scholar 

  • Calonje M, Cubas P, Martínez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135:1491–1501. doi:10.1104/pp.104.040832

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carmona MJ, Cubas P, Martinez-Zapater JM (2002) VFL, the grapevine. FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol 130:68–77. doi:10.1104/pp.002428

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chaim AB, Paran I, Grube RC, Jahn M, Van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  CAS  Google Scholar 

  • Chandler J, Cole M, Flier A, Werr W (2009) BIM, a bHLH protein involved in brassinosteroid signaling, controls Arabidopsis embryonic patterning via interaction with DORNROSCHEN and DORNROSCHEN-LIKE. Plant Mol Biol 69:57–68

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Moshelion M, Daniels M (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 363:557–572. doi:10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer J, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) ping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. doi:10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Coombe BG (1995) Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:100–110. doi:10.1111/j.1755-0238.1995.tb00086.x

    Article  Google Scholar 

  • Costantini L, Grando MS, Feingold S, Ulanovsky S, Mejía N, Hinrichsen P, Doligez A, This P, Cabezas JA, Martinez-Zapater JM (2007) Generation of a common set of mapping markers to assist table grape breeding. Am J Enol Vitic 58:102–111

    Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38. doi:10.1186/1471-2229-8-38

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Costes E (2003) Exploring within-tree architectural development of two apple tree cultivars over 6 years. Annals Bot 91:91–104. doi:10.1093/aob/mcg010

    Article  CAS  Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    PubMed Central  PubMed  CAS  Google Scholar 

  • Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G (2000) Conservation of microsatellite loci within genus Vitis. Theor Appl Genet 101:301–308. doi:10.1007/s001220051483

    Article  Google Scholar 

  • Di Genova A, Miyasaka-Almeida A, Vizoso P, Travisany D, Moraga C, Munoz C, Pinto M, Hinrichsen P, Maass A, Orellana A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14(1):7

    Article  PubMed Central  PubMed  Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith C, Edwards K, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795. doi:10.1007/s00122-002-0951-z

    Article  PubMed  CAS  Google Scholar 

  • Doligez A, Bertrand Y, Dias S, Grolier M, Ballester JF, Bouquet A, This P (2010) QTLs for fertility in table grape (Vitis vinifera L.). Tree Genet Genomes 6:413–422. doi:10.1007/s11295-009-0259-0

    Article  Google Scholar 

  • Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109:1178–1187. doi:10.1007/s00122-004-1728-3

    Article  PubMed  CAS  Google Scholar 

  • Drinkwater NR, Gould MN (2012) The long path from QTL to gene. PLoS Genet. doi:10.1371/journal.pgen.1002975

    PubMed Central  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70. doi:10.1093/nar/gkq310

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Duchêne E, Butterlin G, Dumas V, Merdinoglu D (2012) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 124:623–635. doi:10.1007/s00122-011-1734-1

    Article  PubMed  Google Scholar 

  • Dudley JW, Moll RH (1969) Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Sci 9:257–262

    Article  Google Scholar 

  • Eibach R, Hastrich H, Töpfer R (2003) Inheritance of aroma compounds. Acta Hort 603:337–344

    CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Addison Wesley Longman, Harlow

    Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664. doi:10.1007/s00122-005-2016-6

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J 61:545–557. doi:10.1111/j.1365-313X.2009.04090.x

    Article  PubMed  CAS  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515. doi:10.1007/s00122-003-1445-3

    Article  PubMed  CAS  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139. doi:10.1534/genetics.109.103929

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Galet P, Morton LT (1988) The family Vitaceae and Vitis speciation. In: Pearson RC, Goheen AD (eds) Compendium of grape diseases. American Phytopathological Society, Saint Paul, pp 2–3

    Google Scholar 

  • García-Maroto F, Ortega N, Lozano R, Carmona MJ (2000) Characterization of the potato MADS-box gene STMADS16 and expression analysis in tobacco transgenic plants. Plant Mol Biol 42:499–513. doi:10.1023/A:1006397427894

    Article  PubMed  Google Scholar 

  • Goosey L, Sharrock R (2001) The Arabidopsis compact inflorescence genes: phase-specific growth regulation and the determination of inflorescence architecture. Plant J 26:549–559. doi:10.1046/j.1365-313x.2001.01053.x

    Article  PubMed  CAS  Google Scholar 

  • Goulao L, Fernandes J, Lopes P, Amancio S (2012) Tackling the cell wall of the grape berry. In: Gerós M, Chaves MM, Delrot S (eds) The biochemistry of the grape berry. Bentham e-Books, Sharjah, pp 172–193

    Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Guerrero M (2007) Mapeo integrativo físico y genético de genes candidatos relacionados al desarrollo de la baya y la semillas en Vitis vinifera L. Molecular Biotechnology Engineering Thesis. Universidad de Chile. Santiago, Chile. (In Spanish)

  • Hed B, Ngugi HK, Travis JW (2011) Use of gibberellic acid for management of bunch rot on Chardonnay and Vignoles grape. Plant Dis 95:269–278. doi:10.1094/PDIS-05-10-0382

    Article  CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breeding Rev 22:9–112. doi:10.1002/9780470650202.ch2

    Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pé E, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468. doi:10.1038/nature06148

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Hibrand-Saint Oyant L, Crespel L, Thouroude T, Lalanne D, Foucher F (2011) Quantitative trait loci for flowering time and inflorescence architecture in rose. Theor Appl Genet 122:661–675. doi:10.1007/s00122-010-1476-5

    Article  PubMed  Google Scholar 

  • Korol AB, Ronin YI, Nevo E (1998) Approximate analysis of QTL-environment interaction with no limits on the number of environments. Genetics 148:2015–2028

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krivanek AF, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131. doi:10.1007/s00122-006-0214-5

    Article  PubMed  CAS  Google Scholar 

  • Larson SR, Kellogg EA, Jensen KB (2013) Genes and QTLs controlling inflorescence and stem branch architecture in Leymus (Poaceae: Triticeae) Wildrye. J Hered 104:678–691. doi:10.1093/jhered/est033

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Teo ZW, Bi Y, Song S, Xi W, Yang X, Yin Z, Yu H (2013) A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell 24:612–622. doi:10.1016/j.devcel.2013.02.013

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339. doi:10.1146/annurev.genet.35.102401.090633

    Article  PubMed  CAS  Google Scholar 

  • Marino R, Sevini F, Mandini A, Vecchione A, Pertot I, Serra AD, Versini G, Velasco R, Grando MS (2003) QTL mapping for disease resistance and fruit quality in grape. Acta Hort 603:527–533

    CAS  Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins. A molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mejia N, Soto B, Guerrero M, Casanueva X, Miccono MA, Houel C, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mejía N, Gebauer M, Muñoz L, Hewstone N, Muñoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. Am J Enol Vitic 58:499–507

    Google Scholar 

  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, Decroocq S (2005) Development and characterization of a large set microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366. doi:10.1007/s11032-004-7651-0

    Article  CAS  Google Scholar 

  • Monclus R, Leple JC, Bastien C, Bert PF, Villar M, Marron N, Brignolas F, Jorge V (2012) Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. BMC Plant Biol 12:173. doi:10.1186/1471-2229-12-173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750. doi:10.1046/j.1365-313X.2002.01255.x

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Nakayama M, Reid JB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113:31–37. doi:10.1104/pp.113.1.31

    PubMed Central  PubMed  CAS  Google Scholar 

  • Okada K, Shimura Y (1994) Genetic analyses of signaling in flower development using Arabidopsis. Plant Mol Biol 26:1357–1377. doi:10.1007/BF00016480

    Article  PubMed  CAS  Google Scholar 

  • Périn C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics 266:933–941

    Article  PubMed  CAS  Google Scholar 

  • Peterson PA (1959) Linkage of fruit shape and color genes in Capsicum. Genetics 44:407–419

    PubMed Central  PubMed  CAS  Google Scholar 

  • Piepho HP, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888. doi:10.1534/genetics.107.074229

    Article  PubMed Central  PubMed  Google Scholar 

  • Poehlman JM (1986) Breeding field crops, 3rd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Pratt C (1971) Reproductive anatomy in cultivated grapes—a review. Am J Enol Vitic 22:92–109

    Google Scholar 

  • Pratt C, Shaulis NJ (1961) Gibberellin-induced parthenocarpy on grapes. Proc Amer Soc Hort Sci 77:322–330

    CAS  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed 3 March 2012

  • Rounsley S, Ditta G, Yanofsky M (1995) Diverse roles for MADS Box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sánchez LA, Dokoozlian NK (2005) Bud microclimate and fruitfulness in Vitis vinifera L. Am J Enol Vitic 56:319–329

    Google Scholar 

  • Schneider W, Staudt G (1979) Zur schätzung der heritabilität im weiteren sinn einiger merkmale von Vitis vinifera. Vitis 18:238–243

    Google Scholar 

  • Sefc KS, Regner F, Tureschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their application for genotyping of different Vitis species. Genome 42:367–373. doi:10.1139/g98-168

    Article  PubMed  CAS  Google Scholar 

  • Segura V, Cilas C, Laurens F, Costes E (2006) Phenotyping progenies for complex architectural traits: a strategy for 1-year-old apple trees (Malus × domestica Borkh.). Tree Genet Genomes 2:140–151. doi:10.1007/s11295-006-0037-1

    Article  Google Scholar 

  • Segura V, Denacé C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50:159–171. doi:10.1139/G07-002

    Article  PubMed  CAS  Google Scholar 

  • Shavrukov YN, Dry IB, Thomas MT (2004) Inflorescence and bunch architecture developmentin Vitis vinifera L. Aust J Grape Wine Res 10:116–124. doi:10.1111/j.1755-0238.2004.tb00014.x

    Article  Google Scholar 

  • Sillampää M, Corander J (2002) Model choice in gene mapping: what and why. Trends Genet 18:301–307. doi:10.1016/S0168-9525(02)02688-4

    Article  Google Scholar 

  • Singer SR (2007) Inflorescence architecture—moving beyond description to development, genes and evolution. In: Ainsworth C (ed) Annual plant reviews, flowering and its manipulation, vol 20, Blackwell Publishing Ltd, Oxford, UK. doi:10.1002/9780470988602.ch5

  • Srinivasan C, Mullins MG (1981) Physiology of flowering en the grapevine—a review. Am J Enol Vitic 32:47–63

    CAS  Google Scholar 

  • Stanfield WD (1991) Theory and problems of genetics, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189. doi:10.1105/tpc.018119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TF, Purugganan MD (2002) Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 160:1133–1151

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Purugganan MD, Mackay TF (2003) Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics 165:353–365

    PubMed Central  PubMed  CAS  Google Scholar 

  • Upadyayula N, da Silva HS, Bohn MO, Rocheford TR (2006) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet 112:592–606. doi:10.1007/s00122-005-0133-x

    Article  PubMed  CAS  Google Scholar 

  • Vail ME, Marois JJ (1991) Grape cluster architecture and the susceptibility of berries to Botrytis cinerea. Phytopathology 81:188–191. doi:10.1094/Phyto-81-188

    Article  Google Scholar 

  • Vail ME, Wolpert JA, Gubler WD, Rademacher MR (1998) Effect of cluster tightness on Botrytis bunch rot in six Chardonnay clones. Plant Dis 82:107. doi:10.1094/PDIS.1998.82.1.107

    Article  Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL® 4.0: software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen, The Netherlands

  • Vargas A, Fajardo C, Borrego J, De Andres M, Ibañez J (2013) Polymorphisms in VvPel associate with variation in berry texture and bunch size in the grapevine. Aust J Grape Wine Res 19:193–207

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  Google Scholar 

  • Weaver RJ, McCune SB (1959) Response of certain varieties of Vitis vinifera to gibberellin. Hilgardia 28:297–350

    CAS  Google Scholar 

  • Weaver RJ, Kasimatis AN, McCune SB (1962) Studies with gibberellin on wine grapes to decrease bunch rot. Am J Enol Vitic 13:78–82

    CAS  Google Scholar 

  • Wei T (2011) corrplot: Visualization of a correlation matrix. R package version 0.60. http://CRAN.R-project.org. Accessed 26 March 2012

  • Weiss J, Delgado-Benarroch L, Egea-Cortines M (2005) Genetic control of floral size and proportions. Int J Dev Biol 49:513–525. doi:10.1387/ijdb.051998jw

    Article  PubMed  CAS  Google Scholar 

  • Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General viticulture, 2nd edn. University of California Press, Berkeley

    Google Scholar 

  • Xu K, Riaz S, Roncoroni NC, Jin Y, Hu R, Zhou R, Walker MA (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor Appl Genet 116:305–311. doi:10.1007/s00122-007-0670-6

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232. doi:10.1007/s001220051328

    Article  CAS  Google Scholar 

  • Zyprian E, Eibach R, Töpfer R (2003) Comparative molecular mapping in segregating populations of grapevine. Acta Hort 603:73–77

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by GENOMA-Chile (FONDEF-CONICYT Grant G07I-1002). We also gratefully acknowledge the comments and inputs by the two anonymous reviewers.

Conflict of interest

The authors have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hinrichsen.

Additional information

Communicated by R. Toepfer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correa, J., Mamani, M., Muñoz-Espinoza, C. et al. Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127, 1143–1162 (2014). https://doi.org/10.1007/s00122-014-2286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2286-y

Keywords

Navigation