Skip to main content

Advertisement

Log in

Aspartate carbamoyltransferase of Plasmodium falciparum as a potential drug target for designing anti-malarial chemotherapeutic agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Malaria remains one of the leading causes of deaths attributable to a communicable disease globally. The reemergence of drug-resistant Plasmodium falciparum, the most fatal human malarial parasite, has necessitated the exploration of different pathways to provide the urgently required novel drug targets. Aspartate carbamoyltransferase, an enzyme of de novo pyrimidine biosynthetic pathway in Plasmodium represents an attractive drug target. The enzyme was characterized using in silico tools. Tertiary (3D) structure of the enzyme was generated using the structure of Aspartate carbamoyltransferase of Pyrococcus abyssi (PDB ID: 1ML4) as template by comparative modeling and validated by various structural quality validation tools. The model was stable during the simulation with the equilibrium root-mean-square standard deviation value of ~1 Å. Results from structure assessment tools indicated the reasonably good quality of model. Several inhibitor molecules were docked in the active site of the modeled protein for determining the binding affinity of these molecules toward the protein. Out of various inhibitors used in the study, 3-(4-Hydroxy-phenyl)-2-(2-phosphono-acetylamino)-propionic acid showed highest binding affinity towards ACT. This study provides new insights towards understanding the 3-D Pf ACT structure and binding affinity of selected inhibitor compounds and also paves a way for designing novel anti-malarials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arora N, Banerjee AK, Murty USN (2010) In silico characterization of Shikimate Kinase of Shigella flexneri: a potential drug target. Interdiscip Sci 2(3):280–290

    Article  PubMed  CAS  Google Scholar 

  • Banerjee AK, Arora N, Murty USN (2009) Structural model of the Plasmodium falciparum Thioredoxin reductase: a novel target for antimalarial drugs. J Vector Borne Dis 46(3):171–183

    PubMed  Google Scholar 

  • Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N (2004) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20(8):1322–1324

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  PubMed  CAS  Google Scholar 

  • Breman JG (2001) The ears of the hippopotamus: manifestations, determinants and estimation of the malaria burden. Am J Trop Med Hyg 64(Suppl 1):1–11

    PubMed  CAS  Google Scholar 

  • Breman JG, Alilio MS, Mills A (2004) Conquering the Intolerable Burden of Malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71(Suppl 2):1–15

    PubMed  Google Scholar 

  • Choi JH, Jung HY, Kim HS, Cho HG (2000) PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16(11):1056–1058

    Article  PubMed  CAS  Google Scholar 

  • Christopherson RI, Lyons SD, Wilson PK (2002) Inhibitors of de novo nucleotide biosynthesis as drugs. Acc Chem Res 35(11):961–971

    Article  PubMed  CAS  Google Scholar 

  • Collins KD, Stark GR (1971) Aspartate transcarbamylase. Interaction with the transition state analogue N-(phosphonacetyl)-l-aspartate. J Biol Chem 246(21):6599–6605

    PubMed  CAS  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    Article  PubMed  CAS  Google Scholar 

  • Duddela S, Sekhar PN, Padmavati GV, Banerjee AK, Murty USN (2009) Probing the structure of human glucose transporter 2 and analysis of protein ligand interactions. Med Chem Res 19(8):836–853

    Article  Google Scholar 

  • Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  PubMed  CAS  Google Scholar 

  • Eldo J, Heng S, Kantrowitz ER (2007) Design, synthesis and bioactivity of novel inhibitors of E. coli aspartate transcarbamoylase. Bioorg Med Chem Lett 17(7):2086–2090

    Article  PubMed  CAS  Google Scholar 

  • Gallup JL, Sachs JD (2001) The economic burden of malaria. Am J Trop Med Hug 64(Suppl 1–2):85–96

    CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ

    Google Scholar 

  • Grubmüller H, Heller H, Windemuth A, Schulten K (1991) Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simul 6:121–142

    Article  Google Scholar 

  • Gutteridge E, Trigg PI (1970) Incorporation of radioactive precursors in DNA and RNA of Plasmodium knowlesi in vitro. J Protozool 17(1):89–1796

    PubMed  CAS  Google Scholar 

  • Harris B, Lennard N, Clark L. et al. Submitted (2002) P. falciparum genome sequencing consortium, the Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA 2002, UK

  • Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(6):359–363

    Article  PubMed  CAS  Google Scholar 

  • Hill B, Kilsby J, McIntosh RT, Wrigglesworth R, Ginger CD (1981) Pyrimidine biosynthesis in Plasmodium berghei. Int J Biochem 13(3):303–310

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4):378–379

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  • Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph Model 14(1):33–38

    CAS  Google Scholar 

  • Hyde JE (2007) Drug-resistant malaria—an insight. FEBS J 274(18):4688–4698

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35:W460–W464

    Article  PubMed  Google Scholar 

  • Jones ME (1980) Pyrimidine biosynthesis of animals: genes, enzymes, and regulation of UMP synthesis. Annu Rev Biochem 49:253–279

    Article  PubMed  CAS  Google Scholar 

  • Jones ME, Spector L, Lipmann F (1955) Carbamyl phosphate: the carbamyl donor in enzymatic citrulline synthesis. J Am Chem Soc 77(3):819–820

    Article  CAS  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor RJ (1997) Development and validation of a genetic algorithm for flexible docking. Mol Biol 267(3):727–748

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandresekhar J, Madura DR, Impey W, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Juretic D, Zoranic L, Zucic D (2002) Basic charge clusters and predictions of membrane protein topology. J Chem Inf Comput Sci 42(3):620–632

    Article  PubMed  CAS  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M, Brunner R et al (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    Article  CAS  Google Scholar 

  • Krooth RS, Woo KD, Ma R (1969) Dihydroorotate dehydrogenase: introduction into erythrocytes by the malaria parasite. Science 164(883):1073–1075

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Pavithra SR, Tatu U (2007) Three-dimensional structure of heat shock protein 90 from Plasmodium falciparum: molecular modelling approach to rational drug design against malaria. J Biosci 32(3):531–536

    Article  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003a) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Linding R, Russell RB, Neduva V, Gibson TJ (2003b) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    Article  PubMed  CAS  Google Scholar 

  • Mamatha DM, Nagalakshmamma K, Rajesh DVA, Sheerin VS (2007) Protein modeling of apical membrane antigen-1(AMA-1) of Plasmodium cynomolgi. Afr J Biotechnol 6(22):2628–2632

    CAS  Google Scholar 

  • Manandhar MS, Van Dyke K (1975) Detailed purine salvage metabolism in and outside the free malarial parasite. Exp Parasitol 37(2):138–146

    Article  PubMed  CAS  Google Scholar 

  • Moyer JD, Malinowski N, Ayers O (1985) Salvage of circulating pyrimidine nucleosides by tissue of the mouse. J Biol Chem 260(5):2812–2818

    PubMed  CAS  Google Scholar 

  • Porollo A, Adamczak R, Meller J (2004) POLYVIEW: a flexible visualization tool for structural and functional annotations of proteins. Bioinformatics 20(15):2460–2462

    Article  PubMed  CAS  Google Scholar 

  • Rathod PK, Reyes P (1983) Orotidylate metabolizing enzymes of the human malarial parasite, Plasmodium falciparum, differ from host cell enzymes. J Biol Chem 258(5):2852–2855

    PubMed  CAS  Google Scholar 

  • Reyes P (1969) The synthesis of 5-fluorouridine 5′-monophosphate by a pyrimidine phosphoribosyltransferase of mammalian origin. I. Some properties of the enzyme from P1534J mouse leukemia cells. Biochemistry 8(5):2057–2062

    Article  PubMed  CAS  Google Scholar 

  • Reyes P, Rathod PK, Sanchez DJ, Mrema JEK, Rieckmann KH, Heidrich HG (1982) Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 5(5):275–290

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  PubMed  CAS  Google Scholar 

  • Schlick T (1999) Computational molecular biophysics today: a confluence of methodological advances and complex biomolecular applications. J Comput Phys 151(1):1–8

    Article  CAS  Google Scholar 

  • Sherman IW (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Mol Biol Rev 43(4):453–495

    CAS  Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434(7030):214–217

    Article  PubMed  CAS  Google Scholar 

  • Sonnhammer ELL, Von-Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. In: Glasgow TLJ, Major F, Lathrop R, Sankoff D, Sensen C (eds) Proceedings of the sixth international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, CA, pp 175–182

    Google Scholar 

  • Swyryd EA, Seaver SS, Stark GR (1974) N-(phosphonacetyl)-l-aspartate, a potent transition state analog inhibitor of aspartate transcarbamylase, blocks proliferation of mammalian cells in culture. J Biol Chem 249(21):6945–6950

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850

    Article  PubMed  Google Scholar 

  • Van Dyke K, Tremblay GC, Christian HL, Szustkiewicz C (1970) The Source of Purines and Pyrimidines in Plasmodium Berghei. Am J Trop Med Hyg 19(2):202–208

    PubMed  Google Scholar 

  • Vangapandu S, Jain M, Kaur K, Patil P, Patel SR, Jain R (2007) Recent advances in antimalarial drug development. Med Res Rev 27(1):65–107

    Article  PubMed  CAS  Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56

    Article  PubMed  CAS  Google Scholar 

  • Walsh CJ, Sherman IW (1968) Isolation, characterization and synthesis of DNA from a malaria parasite. J Protozool 15(3):503–508

    PubMed  CAS  Google Scholar 

  • Wiederstein M, Sippl M (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  Google Scholar 

  • World Health Organization (2007) A safer future: global public health security in the 21st century. World Health Report, World Health Organization, Geneva, Switzerland

  • World Health Organization (2008) World Malaria Report, ISBN 978 92 4 156369 7 2008, 1-190

  • Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: The bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. J.S. Yadav, Director, Indian Institute of Chemical Technology, Hyderabad for his continuous support and encouragement. Amit Kumar Banerjee is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, for Senior Research Fellowship.

Conflict of interests

There is no conflict of interest for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upadhyayula Surya Narayana Murty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A.K., Arora, N. & Murty, U.S.N. Aspartate carbamoyltransferase of Plasmodium falciparum as a potential drug target for designing anti-malarial chemotherapeutic agents. Med Chem Res 21, 2480–2493 (2012). https://doi.org/10.1007/s00044-011-9757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9757-3

Keywords

Navigation