Skip to main content
Log in

Constraining noncommutative field theories with holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

An important window to quantum gravity phenomena in low energy noncom-mutative (NC) quantum field theories (QFTs) gets represented by a specific form of UV/IR mixing. Yet another important window to quantum gravity, a holography, manifests itself in effective QFTs as a distinct UV/IR connection. In matching these two principles, a useful relationship connecting the UV cutoff ΛUV, the IR cutoff ΛIR and the scale of non-commutativity ΛNC, can be obtained. We show that an effective QFT endowed with both principles may not be capable to fit disparate experimental bounds simultaneously, like the muon g − 2 and the masslessness of the photon. Also, the constraints from the muon g − 2 preclude any possibility to observe the birefringence of the vacuum coming from objects at cosmological distances. On the other hand, in NC theories without the UV completion, where the perturbative aspect of the theory (obtained by truncating a power series in \( \Lambda_{\text{NC}}^{ - 2} \)) becomes important, a heuristic estimate of the region where the perturbative expansion is well-defined ENC ≲ 1, gets affected when holography is applied by providing the energy of the system E a ΛNC-dependent lower limit. This may affect models which try to infer the scale ΛNC by using data from low-energy experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R.J. Szabo, Quantum Field Theory on Noncommutative Spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  5. C.-S. Chu, Non-commutative geometry from strings, hep-th/0502167 [SPIRES].

  6. S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [SPIRES].

    Article  ADS  Google Scholar 

  7. A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the non-commutative gauge theories, JHEP 12 (2000) 002 [hep-th/0002075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Filk, Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996) 53 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. N. Ishibashi, S. Iso, H. Kawai and Y. Kitazawa, Wilson loops in noncommutative Yang-Mills, Nucl. Phys. B 573 (2000) 573 [hep-th/9910004] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Álvarez-Gaumé and M.A. Vazquez-Mozo, General properties of noncommutative field theories, Nucl. Phys. B 668 (2003) 293 [hep-th/0305093] [SPIRES].

    Article  ADS  Google Scholar 

  11. J. Jaeckel, V.V. Khoze and A. Ringwald, Telltale traces of U(1) fields in noncommutative standard model extensions, JHEP 02 (2006) 028 [hep-ph/0508075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Vacuum birefringence as a probe of Planck scale noncommutativity, JHEP 09 (2006) 074 [hep-ph/0607188] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M.E. Peskin and D.V. Schroeder, An Introduction To Quantum Field Theory, Addison-Wesley, Reading U.S.A. (1995) [SPIRES].

    Google Scholar 

  14. M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R 4, Phys. Lett. B 478 (2000) 394 [hep-th/9912094] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. M. Hayakawa, Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on R 4, hep-th/9912167 [SPIRES].

  16. M. Hayakawa, Perturbative ultraviolet and infrared dynamics of noncommutative quantum field theory, hep-th/0009098 [SPIRES].

  17. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [SPIRES].

  18. D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Effective field theory, black holes and the cosmological constant, Phys. Rev. Lett. 82 (1999) 4971 [hep-th/9803132] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. R. Banerjee, B.R. Majhi and S. Samanta, Noncommutative Black Hole Thermodynamics, Phys. Rev. D 77 (2008) 124035 [arXiv:0801.3583] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired Schwarzschild black hole, Phys. Lett. B 632 (2006) 547 [gr-qc/0510112] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [SPIRES].

    ADS  Google Scholar 

  23. R. Horvat, D. Kekez and J. Trampetic, Spacetime noncommutativity and ultra-high energy cosmic ray experiments, arXiv:1005.3209 [SPIRES].

  24. G. Amelino-Camelia, G. Mandanici and K. Yoshida, On the IR/UV mixing and experimental limits on the parameters of canonical noncommutative spacetimes, JHEP 01 (2004) 037 [hep-th/0209254] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Nobbenhuis, The cosmological constant problem, an inspiration for new physics, gr-qc/0609011 [SPIRES].

  26. V.A. Kostelecky and M. Mewes, Sensitive polarimetric search for relativity violations in gamma-ray bursts, Phys. Rev. Lett. 97 (2006) 140401 [hep-ph/0607084] [SPIRES].

    Article  ADS  Google Scholar 

  27. W. Behr et al., The Z → γγ/gg decays in the noncommutative standard model, Eur. Phys. J. C 29 (2003) 441 [hep-ph/0202121] [SPIRES].

    ADS  Google Scholar 

  28. B. Melic, K. Passek-Kumericki and J. Trampetic, Quarkonia decays into two photons induced by the space-time non-commutativity, Phys. Rev. D 72 (2005) 054004 [hep-ph/0503133] [SPIRES].

    ADS  Google Scholar 

  29. B. Melic, K. Passek-Kumericki and J. Trampetic, Kpi gamma decay and space-time noncommutativity, Phys. Rev. D 72 (2005) 057502 [hep-ph/0507231] [SPIRES].

    ADS  Google Scholar 

  30. C. Tamarit and J. Trampetic, Noncommutative fermions and quarkonia decays, Phys. Rev. D 79 (2009) 025020 [arXiv:0812.1731] [SPIRES].

    ADS  Google Scholar 

  31. M. Burić, D. Latas, V. Radovanović and J. Trampetic, Improved Zγγ decay in the renormalizable gauge sector of the noncommutative standard model, hep-ph/0611299 [SPIRES].

  32. J. Trampetic, Renormalizability and Phenomenology of theta-expanded Noncommutative Gauge Field Theory, Fortschr. Phys. 56 (2008) 521 [arXiv:0802.2030] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Alboteanu, T. Ohl and R. Ruckl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006) 096004 [hep-ph/0608155] [SPIRES].

    ADS  Google Scholar 

  34. A. Alboteanu, T. Ohl and R. Ruckl, The Noncommutative Standard Model at O(θ 2), Phys. Rev. D 76 (2007) 105018 [arXiv:0707.3595] [SPIRES].

    ADS  Google Scholar 

  35. S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane and T. Okamoto, Noncommutative field theory and Lorentz violation, Phys. Rev. Lett. 87 (2001) 141601 [hep-th/0105082] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Schupp, J. Trampetic, J. Wess and G. Raffelt, The photon neutrino interaction in non-commutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36 (2004) 405 [hep-ph/0212292] [SPIRES].

    Article  ADS  Google Scholar 

  37. P. Minkowski, P. Schupp and J. Trampetic, Neutrino dipole moments and charge radii in non-commutative space-time, Eur. Phys. J. C 37 (2004) 123 [hep-th/0302175] [SPIRES].

    Article  ADS  Google Scholar 

  38. M. Haghighat, Bounds on the Parameter of Noncommutativity from Supernova SN1987A, Phys. Rev. D 79 (2009) 025011 [arXiv:0901.1069] [SPIRES].

    ADS  Google Scholar 

  39. E. Akofor, A.P. Balachandran, A. Joseph, L. Pekowsky and B.A. Qureshi, Constraints from CMB on Spacetime Noncommutativity and Causality Violation, Phys. Rev. D 79 (2009) 063004 [arXiv:0806.2458] [SPIRES].

    ADS  Google Scholar 

  40. R. Horvat and J. Trampetic, Constraining spacetime noncommutativity with primordial nucleosynthesis, Phys. Rev. D 79 (2009) 087701 [arXiv:0901.4253] [SPIRES].

    ADS  Google Scholar 

  41. M. Chaichian, M.M. Sheikh-Jabbari and A. Tureanu, Hydrogen atom spectrum and the Lamb shift in noncommutative QED, Phys. Rev. Lett. 86 (2001) 2716 [hep-th/0010175] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. Stern, Noncommutative Point Sources, Phys. Rev. Lett. 100 (2008) 061601 [arXiv:0709.3831] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Haghighat, S.M. Zebarjad and F. Loran, Positronium hyperfine splitting in non-commutative space at the order α 6, Phys. Rev. D 66 (2002) 016005 [hep-ph/0109105] [SPIRES].

    ADS  Google Scholar 

  44. M. Haghighat and F. Loran, Three body bound state in noncommutative space, Phys. Rev. D 67 (2003) 096003 [SPIRES].

    ADS  Google Scholar 

  45. V.V. Khoze and G. Travaglini, Wilsonian effective actions and the IR/UV mixing in noncommutative gauge theories, JHEP 01 (2001) 026 [hep-th/0011218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. T.J. Hollowood, V.V. Khoze and G. Travaglini, Exact results in noncommutative N = 2 supersymmetric gauge theories, JHEP 05 (2001) 051 [hep-th/0102045] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Trampetić.

Additional information

ArXiv ePrint: 1009.2933v1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horvat, R., Trampetić, J. Constraining noncommutative field theories with holography. J. High Energ. Phys. 2011, 112 (2011). https://doi.org/10.1007/JHEP01(2011)112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)112

Keywords

Navigation