Skip to main content
Log in

Long-term and real-time monitoring system of the East/Japan sea

  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-term current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chang, K.-I., Y.-B. Kim, M.-S. Suk, and S.-K. Byun. 2002a. Hydrography around Dokdo.Ocean and Polar Res.,24, 369–389.

    Google Scholar 

  • Chang, K.-I., N.G. Hogg, M.-S. Suk, S.-K. Byun, Y.-G. Kim, and K. Kim. 2002b. Mean flow and variability in the southwestern East Sea.Deep-Sea Res. Part I,49, 2261- 2279.

    Article  Google Scholar 

  • Chang, K.-I., W.J. Teague, S.J. Lyu, H.T. Perkins, D.-K. Lee, D.R. Watts, Y.-B. Kim, D.A. Mitchell, C.M. Lee, and K. Kim. 2004. Circulation and currents in the southwestern East/Japan Sea: Overview and review.Prog. Oceanogr.,61, 105–156.

    Article  Google Scholar 

  • Cornillon, P. C. and K.-A. Park. 2001. Warm core ring velocity inferred from NSCAT.Geophys. Res. Lett.,28, 575–578.

    Article  Google Scholar 

  • Csanady, G. T. 1984. Circulation in the coastal ocean. D. Reidel Publishing Co., Holland.

    Google Scholar 

  • Freilich, M. H. 1997. Validation of vector magnitude datasets: effects of random component errors.J. Atmos. Oceanic. Tech.,14, 695–703.

    Article  Google Scholar 

  • Hogan, P. J. and H. E. Hullbert. 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/ East Sea models with 1/8° to 1/64° resolution.J. Phys. Oceanogr.,30, 2535–2561.

    Article  Google Scholar 

  • Holloway, G., T. Sou, and M. Eby. 1995. Dynamics of circulation of the Japan Sea.J. Mar. Res.,53, 539–569.

    Article  Google Scholar 

  • Kim, C. H. and K. Kim. 1983. Characteristics and origin of the cold water mass along the east coast of Korea.J. Korean Soc. Oceanogr.,18(1), 73–83.

    Google Scholar 

  • Kim, C.-H. and J.-H. Yoon. 1999. A numerical modeling of the upper and the intermediate layer circulation in the East Sea.J. Oceanogr.,55, 327–345.

    Article  Google Scholar 

  • Kim, D.-J, W.M. Moon, S.H. Nam, and K. Kim. 2003. Evaluation of ENVISAT ASAR data for measurement of surface wind field over the Korean east coast.Proc. IGARSS 2003.

  • Kim, H. R., S. Ahn, and K. Kim. 2001. Observations of highly nonlinear internal solitons generated by near-inertial internal waves off the east coast of Korea.Geophys. Res. Lett.,28(16), 3191–3194.

    Article  Google Scholar 

  • Kim, K., K.-R. Kim, Y.-G. Kim, Y.-K. Cho, J.-Y. Chung, B.-H. Choi, S.-K. Byun, G.-H. Hong, M. Takematsu, J.-H. Yoon, Y. Volkov, and M. Danchenkov. 1996. New findings from CREAMS observations: Water masses and eddies in the East Sea.J. Korean Soc. Oceanogr.,31, 155–163.

    Google Scholar 

  • Kim, K., Y. G. Kim, K.-W. Kim, and H. Ossi. 1999.Real-time ocean buoy off the east coast of Korea. p. 1–6. In:Proc. Int. Sym. Prog. Coastal Eng. Oceanogr. Seoul, Korea.

    Google Scholar 

  • Kim, K., K.-R. Kim, D.-H. Min, Y. Volkov, J.-H. Yoon, and M. Takematsu. 2001. Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans?Geophys. Res. Lett.,28(17), 3293–3296.

    Article  Google Scholar 

  • Kim, K., K.-R. Kim, Y.-G. Kim, Y.-K. Cho, D.-J. Kang, M. Takematsu, and Y. Volkov. 2004a. Water masses and decadal variability in the East Sea (Sea of Japan).Prog. Oceangr.,61, 157–174.

    Article  Google Scholar 

  • Kim, K., S. J. Lyu, Y. - G. Kim, B. H. Choi, K. Taira, H. T. Perkins, W. J. Teague, and J. W. Book. 2004b. Monitoring Volume Transport through Measurement of Cable Voltage across the Korea Strait.J. Atmos. Ocean. Tec.,21, 671–682.

    Article  Google Scholar 

  • Kim, K., S. H. Nam, D. -J. Kim, K.-W. Kim, H. Ossi, Y.-G. Kim, and J.-W. Seo. 2004c. Real-time wave measurement using an ocean monitoring buoy. p. 83-92. In:Workshop on wave, tide observation and modeling in the Asian-Pacific Region.

  • Kim, Y.-G. and K. Kim. 1999. Intermediate Waters in the East/ Japan Sea.J. Oceanogr.,55, 123–132.

    Article  Google Scholar 

  • Kim, Y.-G., K. Kim, Y.-K. Cho, and H. Ossi. 2000. CTD data processing for CREAMS expeditions: Thermal-lag correction of Sea-Bird CTD.J. Korean Soc. Oceanogr.,35(4), 192–199.

    Google Scholar 

  • Kobayashi T, Y. Ichikawa, Y. Takatsuki, T. Suga, N. Iwasaka, K. Ando, K. Mizuno, N. Shikama, and K. Takeuchi. 2001. Quality control of ARGO data based on high quality climatological dataset (HydroBase). I. ARGO Technical Report, FY2001, 36–48.

  • Larsen, J. C. 1992. Transport and heat flux of the Florida Current at 27°N derived from cross-stream voltages and profiling data: theory and observations.Philos. Trans. R. Soc. London,A338, 169–236.

    Article  Google Scholar 

  • Larsen, J. C., R. L. Mackie, A. Manzella, A. Fiordelisi, and S. Rieven. 1996. Robust sm ooth magnetotelluric transfer functions.Geophys. J. Int.,124, 801–809.

    Article  Google Scholar 

  • Liu, W.T., K.B. Katsaros, and J.A. Businger. 1979. Bulk parameterization of the air-sea exchange of heat and water vapor including the molecular constraints at the interface.J. Atmos. Sci.,36, 1722–1735.

    Article  Google Scholar 

  • Lyu, S. J. and K. Kim. 2003. Absolute transport from the sea level difference across the Korea Strait.Geophys. Res. Lett.,30, 1285, doi:10.1029/2002GL016233.

    Article  Google Scholar 

  • Lyu, S. J., K. Kim, and H. T. Perkins. 2002a. Atmospheric pressure-forced subinertial variations in the transport through the Korea Strait.Geophys. Res. Lett.,29, 1294, doi:10.1029/2001GL014366.

    Article  Google Scholar 

  • Lyu, S. J., Y.-G. Kim, K. Kim, J. W. Book, and B. H. Choi. 2002b. Tidal variations in the cable voltage across the Korea Strait.J. Korean Soc. Oceanogr.,37, 1–9.

    Google Scholar 

  • Nam, S. H., K.-W. Kim, H. R. Kim, C. B. Cho, S. J. Lyu, Y. G. Kim, and K. Kim. 2003. Development of ESROB (East Sea Real-time Ocean Buoy). In:PICES Scientific Report series from 2002 MONITOR workshop, Qingdao, China.

    Google Scholar 

  • Nam, S. H., S. J. Lyu, Y. H. Kim, K. Kim, J.-H. Park, and D. R. Watts. 2004a. Correction of TOPEX/POSEIDON altimeter data for nonisostatic sea level response to atmospheric pressure in the Japan/East Sea.Geophys. Res. Lett.,31(2), L02304, doi: 10.1029/2003GL018487.

    Article  Google Scholar 

  • Nam, S. H., J. Y. Yun, and K. Kim, 2004b. Observations on the coastal ocean response to typhoon ‘Maemi’ at the East Sea Real-time Ocean Buoy.J. Korean Soc. Oceanogr. (The Sea),9(3), 111–119.

    Google Scholar 

  • Nam, S. H., Y. H. Kim, K.-A. Park, and K. Kim. 2004c. Spatiotemporal variability in sea surface wind stress near and off the east coast of Korea.Acta. Oceanol. Sin.,24(1). (In press)

  • Park, J.J., K. Kim, J.-C. Nam, Y.-H. Youn, H.M. Lee, and J.-W. Seo. 2002. Data validation from ARGO float.Proc. Korean Meteorol. Soc. Spring, Seoul, Korea.

    Google Scholar 

  • Park, J.J. and K. Kim. 2003. Importance of surface water property in previous winter on the formation of HSIW in the East/Japan Sea.PICES, Seoul, Korea.

    Google Scholar 

  • Park, J.J., K. Kim, and W. R. Crawford. 2004. Inertial currents estimated from surface trajectories of ARGO floats.Geophys. Res. Lett.,31, L13307, doi:10.1029/2004GL020191.

    Article  Google Scholar 

  • Park, J.J., K. Kim, B. A. King, and S. C. Riser. 2005. An advanced method to estimate deep current from ARGO floats.J. Atmos. Oceanic Tech. (In press).

  • Park, J.J., K. Kim, and B. A. King. 2005. Global Statistics of inertial motions.Gephys. Res. Lett. (In preparation).

  • Park, K.-A., J. Y. Chung, K. Kim, and B. H. Choi. 1994. A study on comparison of satellite drifter temperature with satellite derived sea surface temperature of NOAA/NESDIS.J. Korean Soc. Remote Sensing,11(2), 83–107.

    Google Scholar 

  • Park, K.-A., J. Y. Chung, K. Kim, B. H. Choi, and D. K. Lee. 1999. Sea surface temperature retrievals optimized to the East Sea (Sea of Japan) using NOAA/AVHRR data.Marine Technol. Soc. J.,33(1), 23–35.

    Article  Google Scholar 

  • Park, K.-A. and P. C. Cornillon. 2002. Stability-induced modification of sea surface winds over Gulf Stream rings.Geophys. Res. Lett.,29(24), 2211–2214.

    Article  Google Scholar 

  • Park, K.-A., K. R. Kim, K. Kim, J. Y. Chung, and P. C. Cornillon. 2003. Comparison of wind speed from an atmospheric pressure map (Na wind) and satellite scatterometer-observed wind speed (NSCAT) over the East (Japan) Sea.J. Korean Soc. Oceanogr.,38(4), 173–184.

    Google Scholar 

  • Park, K.-A., K. Kim, K.R. Kim, J.Y. Chung, and P. C. Cornillon. 2003. Spatial and temporal variability of sea surface winds and Ekman pumping retrieved from satellite scatterometer-observed wind vectors over the East Sea. In:PICES, Seoul, Korea.

    Google Scholar 

  • Park, K.-A., J. Y. Chung, and K. Kim. 2004a. Sea surface temperature Fronts in the East (Japan) Sea and temporal variations.Geophys. Res. Lett.,31, L07304, doi:10.1029/2004GL019424.

    Article  Google Scholar 

  • Park, K.-A., K. Kim, K. R. Kim, P.C. Cornillon, and C.-O. Jo. 2004b. Ekman pumping variability in the East (Japan) Sea and its impact on nutrient distributions. In:6th IOC/WESTPAC Symposium, Hangzhou, China.

    Google Scholar 

  • Park, K.-A., J. Y. Chung, and K. R. Kim. 2004c. SST Applications at SNU/RIO. In:6th IOC/WESTPAC Symposium, Hangzhou, China.

    Google Scholar 

  • Park, K.-A., J. Y. Chung, K. Kim, and P. C. Cornillon. 2004d. Wind and bathymetric forcing of the annual sea surface temperature signal in the East (Japan) Sea.Geophys. Res. Lett.,32, L5610, doi:10. 1029/2004GL022197.

    Article  Google Scholar 

  • Park, Y.-G., K.-H. Oh, K.-I. Chang, and M.-S. Suk. 2004. Intermediate level circulation of the southwestern part of the East/Japan Sea estimated from autonomous isobaric profiling floats.Geophys. Res. Lett.,31, L13213, doi:10.1029/2004GL020424.

    Article  Google Scholar 

  • Sanford, T. B. and R. E. Flick. 1975. On the relationship between transport and motional electric potentials in broad, shallow currents.J. Mar. Res.,33, 123–139.

    Google Scholar 

  • Takikawa, T., J.-H. Yoon, H. Hase, and K.-D. Cho. 1999. Monitoring of the Tsushima Current at the Tsushima/Korea Straits. p. 15–18. In:Proc. 3rd CREAMS Int. Symp., Fukuoka, Japan. Japanese Ministry of Education, Science, Sports and Culture.

    Google Scholar 

  • Teague, W. J., G. A. Jacobs, H. T. Perkins, J. W. Book, K.-I. Chang, and M.-S. Suk. 2002. Low-frequency current observations in the Korea/Tsushima Strait.J. Phys. Oceanogr.,32, 1621–1641.

    Article  Google Scholar 

  • Teague, W.J., K.L. Tracey, D.R. Watts, J.W. Book, K.-I. Chang, P.J. Hogan, D.A. Mitchell, M.-S. Suk, M. Wimbush, and J.- H. Yoon. 2005. Observed deep circulation in the Ulleung Basin.Deep-Sea Res. II. (In press)

  • Wong, A. P. S., G. C. Johnson, and W. B. Owens. 2003. Delayed-mode calibration of autonomous CTD profiling float salinity data by theta-S climatology.J. Atmos. Oceanic Tech.,20, 308–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuh Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Kim, Y.B., Park, J.J. et al. Long-term and real-time monitoring system of the East/Japan sea. Ocean Sci. J. 40, 25–44 (2005). https://doi.org/10.1007/BF03023463

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03023463

Key words

Navigation