Skip to main content
Log in

Transcriptional Regulation of Myelopoiesis

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

A common myeloid progenitor gives rise to both granulocytes and monocytes. The early stages of granulopoiesis are mediated by the C/EBPα, PU.1, RAR, CBF, and c-Myb transcription factors, and the later stages require C/EBPε, PU.1, and CDP. Monocyte development requires PU.1 and interferon consensus sequence binding protein and can be induced by Maf-B, c-Jun, or Egr-1. Cytokine receptor signals modulate transcription factor activities but do not determine cell fates. Several mechanisms orchestrate the myeloid developmental program, including cooperative gene regulation, protein:protein interactions, regulation of factor levels, and induction of cell cycle arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages.Nature. 2000;404:193–197.

    Article  CAS  PubMed  Google Scholar 

  2. Traver D, Miyamoto T, Christensen J, Iwasaki-Arai J, Askashi K, Weissman IL. Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets.Blood. 2001;98: 627–635.

    Article  PubMed  CAS  Google Scholar 

  3. Lacaud G, Carlsson L, Keller G. Identification of a fetal hemato-poietic precursor with B cell, T cell, and macrophage potential.Immunity. 1998;9:827–838.

    Article  PubMed  CAS  Google Scholar 

  4. Montecino-Rodriguez E, Leathers H, Dorshkind K. Bipotential B-macrophage progenitors are present in adult bone marrow.Nat Immunol. 2001;2:83–88.

    Article  PubMed  CAS  Google Scholar 

  5. Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. Dendritic cell potentials of early lymphoid and myeloid progenitors.Blood. 2001;97:3333–3341.

    Article  PubMed  CAS  Google Scholar 

  6. Ward AC, Loeb DM, Soede-Bobok AA, Touw I, Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals.Leukemia. 2000;14:973–990.

    Article  PubMed  CAS  Google Scholar 

  7. Lieschke GJ, Grail D, Hodgson G, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor deficiency, and impaired neutrophil mobilization.Blood. 1994;84:1737–1746.

    PubMed  CAS  Google Scholar 

  8. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice.Cell. 1996;5: 491–501.

    CAS  Google Scholar 

  9. Liu F, Poursine-Laurent J, Wu HY, Link DC. Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation.Blood. 1997; 90:2583–2590.

    PubMed  CAS  Google Scholar 

  10. Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR. Mice lacking both granulocyte colony stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amy-loidosis, and reduced long-term survival.Blood. 1997;90:3037–3049.

    PubMed  CAS  Google Scholar 

  11. Wang W, Wang X, Ward AC, Touw IP, Friedman AD. C/EBPalpha and G-CSF receptor signals cooperate to induce the myeloperoxidase and neutrophil elastase genes.Leukemia. 2001;15:779–786.

    Article  PubMed  CAS  Google Scholar 

  12. Nakajima H, Ihle JN. Granulocyte colony-stimulating factor regulates myeloid differentiation through CCAAT/enhancer-binding protein epsilon.Blood. 2001;98:897–905.

    Article  PubMed  CAS  Google Scholar 

  13. Kondo M, Scherer DC, Miyamoto T, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines.Nature. 2000;407:383–386.

    Article  PubMed  CAS  Google Scholar 

  14. Lagasse E, Weissman IL. Enforced expression of Bcl-2 in mono-cytes rescues macrophages and partially reverses osteopetrosis in op/op mice.Cell. 1997;89:1021–1031.

    Article  PubMed  CAS  Google Scholar 

  15. Landschulz WH, Johnson PF, McKnight SL. The DNA binding domain of the rat liver protein C/EBP is bipartite.Science. 1989; 246:1681–1688.

    Article  Google Scholar 

  16. Friedman AD, Landschulz WH, McKnight SL. CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells.Genes Dev. 1989;3:1314–1322.

    Article  PubMed  CAS  Google Scholar 

  17. Friedman AD, McKnight SL. Identification of two polypeptide segments of CCAAT/enhancer-binding protein required for transcriptional activation of the serum albumin gene.Genes Dev. 1990;4: 1416–1426.

    Article  PubMed  CAS  Google Scholar 

  18. Calkhoven CF, Muller C, Leutz A. Translational control of C/ EBPalpha and C/EBPbeta isoform expression.Genes Dev. 2000; 14:1920–1932.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Williamson E, Xu HN, Gombart AF, et al. Identification of transcriptional activation and repression domains in human CCAAT/enhancer-binding protein epsilon.J Biol Chem. 1998;273: 14796–14808.

    Article  PubMed  CAS  Google Scholar 

  20. Habener JF, Ron D. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factor C/EBP and LAP functions as a dominant-negative inhibitor of gene transcription.Genes Dev. 1992;6:439–453.

    Article  PubMed  Google Scholar 

  21. Cooper C, Henderson A, Artandi S, Avitahl N, Calame K. Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators.Nucl Acids Res. 1995;23: 4371–4377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Scott LM, Civin CI, Rorth P, Friedman AD. A novel temporal pattern of three C/EBP family members in differentiating myelomonocytic cells.Blood. 1992;80:1725–1735.

    PubMed  CAS  Google Scholar 

  23. Muller C, Kowenz-Leutz E, Grieser-Ada S, Graf T, Leutz A. NF-M (chicken C/EBPβ) induces eosinophilic differentiation and apoptosis in a hematopoietic progenitor cell line.EMBO J. 1995;14: 6127–6135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Radomska HS, Huettner CS, Zhang P, Tenen DG. C/EBPα is a regulatory switch sufficient for induction of granulocytic differentiation from bipotential myeloid cells.Mol Cell Biol. 1998;18: 4301–4314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang DE, Tenen DG. PU.1 and C/EBPα regulate expression of the granulocyte-macrophage colony-stimulating factor receptor α gene.Mol Cell Biol. 1995;15:5830–5845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Antonson P, Stellan B, Yamanaka R, Xanthopoulos KG. A novel human CCAAT/enhancer binding protein gene, C/EBP epsilon, is expressed in cells of lymphoid and myeloid lineages and is localized on chromosome 14q11.2 close to the T cell receptor alpha/ delta locus.Genomics. 1996;35:30–38.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. Absence of G-CSF signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice.Proc Natl Acad Sci U S A. 1997;94:569–574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhang P, Iwama A, Datta MW, Darlington GJ, Link DC, Tenen DG. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein α (C/EBPα) is critical for granulopoiesis.J Exp Med. 1998; 188:1173–1184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Screpanti I, Romani L, Musiani P, et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBPβ-deficient mice.EMBO J. 1995;14:1932–1941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tanaka T, Akira S, Yoshida M, et al. Targeted disruption of the NF- IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages.Cell. 1995;80:353–361.

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene.EMBO J. 1997;16:7432–7443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yamanaka R, Barlow C, Lekstrom-Himes J, et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice.Proc Natl Acad Sci U S A. 1997;94:13187–13192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chumakov AM, Grillier I, Chumakova E, Chih D, Slater J, Koeffler HP. Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor.Mol Cell Biol. 1997;17:1375–1386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lekstrom-Himes JA, Dorman SE, Kopar P, Holland SM, Gallin JI. Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon.J Exp Med. 1999;189: 1847–1852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang X, Scott E, Sawyers CL, Friedman AD. C/EBPα bypasses G-CSF signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts.Blood. 1999;94:560–571.

    PubMed  CAS  Google Scholar 

  36. Wang QF, Friedman AD. C/EBPs are required for granulopoiesis independent of their induction of the granulocyte-colony stimulating factor.Blood. 2002. In press.

  37. Park DJ, Chumakov A, Vuong P, et al. CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment.J Clin Invest. 1999;103:1399–1408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Friedman AD, Wang QF. C/EBP activity is necessary for granulopoiesis and proliferation in the presence of exogenous G-CSF receptor [abstract].Blood. 2000;96:669a.

    Google Scholar 

  39. Chen SS, Chen JF, Johnson PF, Muppala V, Lee YH. C/EBPbeta, when expressed from the C/ebpalpha gene locus, can functionally replace C/EBPalpha in liver but not in adipose tissue.Mol Cell Biol. 2000;20:7292–7299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Umek RH, Friedman AD, McKnight SL. CCAAT/Enhancer bind- ing protein: a component of a differentiation switch.Science. 1991; 25:288–292.

    Article  Google Scholar 

  41. Timchenko NA, Wilde M, Darlington GJ. C/EBPα regulates formation of S-phase-specific E2F-p107 complexes in livers of newborn mice.Mol Cell Biol. 1999;19:2936–2945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Slomiany BA, D’Arigo KL, Kelly MM, Kurtz DT. C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription.Mol Cell Biol. 2000;20:5986–5997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Johansen LM, Iwama A, Lodie TA, et al. c-Myc is a critical target for C/EBP alpha in granulopoiesis.Mol Cell Biol. 2001;21: 3789–3806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bies J, Mukhopadhyaya R, Pierce J, Wolff L. Only late, nonmitotic stages of granulocyte differentiation in 32Dcl3 cells are blocked by ectopic expression of murine c-myb and its truncated forms.Cell Growth Differ. 1995;6:59–68.

    PubMed  CAS  Google Scholar 

  45. Lou J, Cao W, Bernardin F, Ayyanathan K, Rauscher III FJ, Friedman AD. Exogenous cdk4 overcomes reduced cdk4 RNA and inhibition of G1 progression in hematopoietic cells expressing a dominant-negative CBF—a model for overcoming inhibition of proliferation by CBF oncoproteins.Oncogene. 2000;19:2695–2703.

    Article  PubMed  CAS  Google Scholar 

  46. Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937.Genes Dev. 1996;10:142–153.

    Article  PubMed  CAS  Google Scholar 

  47. Klemsz MJ, McKercher SR, Celada A, Van Beveran C, Maki RA. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene.Cell. 1990;61:113–124.

    Article  PubMed  CAS  Google Scholar 

  48. Chen HM, Zhang P, Voso MT, et al. Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B.Blood. 1995;85: 2918–2928.

    PubMed  CAS  Google Scholar 

  49. Cheng T, Shen H, Giokas D, Gere J, Tenen DG, Scadden DT. Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells.Proc Natl Acad Sci U S A. 1996;93:13158–13163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages.Science. 1994;265:1573–1577.

    Article  PubMed  CAS  Google Scholar 

  51. McKercher SR,Torbett BE, Anderson KL, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities.EMBO J. 1996;15:5647–5658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1.Science. 2000; 288:1439–1441.

    Article  PubMed  CAS  Google Scholar 

  53. Anderson KL, Smith KA, Perkin H, et al. Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent.Blood. 1999;94:2310–2318.

    PubMed  CAS  Google Scholar 

  54. Henkel GW, McKercher SR, Leenen PJ, Maki R. Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1.Blood. 1999;93:2849–2858.

    PubMed  CAS  Google Scholar 

  55. Eisenbeis CF, Singh H, Storb U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator.Genes Dev. 1995;9:1377–1387.

    Article  PubMed  CAS  Google Scholar 

  56. Meraro D, Hashmueli S, Koren B, et al. Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors.J Immunol. 1999;163:6468–6478.

    PubMed  CAS  Google Scholar 

  57. Marecki S, Riendeau CJ, Liang MD, Fenton MJ. PU.1 and multiple IFN regulatory factor proteins synergize to mediate transcriptional activation of the human IL-1 beta gene.J Immunol. 2001;166: 6829–6838.

    Article  PubMed  CAS  Google Scholar 

  58. Holtschke T, Lohler J, Kanno Y, et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene.Cell. 1996;87:307–317.

    Article  CAS  PubMed  Google Scholar 

  59. Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages.Immunity. 2000;13:155–165.

    Article  PubMed  CAS  Google Scholar 

  60. Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation.Mol Cell Biol. 1993; 13:841–851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Szabo E, Preis LH, Birrer MJ. Constitutive c-jun expression induces partial macrophage differentiation in U937 cells.Cell Growth Differ. 1994;5:439–446.

    PubMed  CAS  Google Scholar 

  62. Li AC, Guidez FRB, Collier JG, Glass CK. The macrosialin promoter directs high levels of transcriptional activity in macrophages dependent on combinatorial interactions between PU.1 and c-Jun.J Biol Chem. 1998;273:5389–5399.

    Article  PubMed  CAS  Google Scholar 

  63. van Dam H, Duyndam M, Rottier R, et al. Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein.EMBO J. 1993;12:479–487.

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Groot R, Auwerx J, Karperien M, Staels B, Kruijer W. Activation of junB by PKC and PKA signal transduction through a novel cis-acting element.Nucl Acids Res. 1991;19:775–781.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Arias J, Alberts AS, Brindle P, et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor.Nature. 1994;370:226–229.

    Article  PubMed  CAS  Google Scholar 

  66. Eferl R, Sibilia M, Hilberg F, et al. Functions of c-Jun in liver and heart development.J Cell Biol. 1999;145:1049–1061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Passegue E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U, Wagner EF. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage.Cell. 2001;104:21–32.

    Article  PubMed  CAS  Google Scholar 

  68. Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells.Genes Dev. 1999;13: 1398–1411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhang P, Zhang X, Iwama A, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding.Blood. 2000;96:2641–2648.

    PubMed  CAS  Google Scholar 

  70. Querfurth E, Schuster M, Kulessa H, et al. Antagonism between C/ EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors.Genes Dev. 2000;14:2515–2525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Friedman AD. Leukemogenesis by CBF oncoproteins.Leukemia. 1999;13:1932–1942.

    Article  CAS  PubMed  Google Scholar 

  72. Bae SC, Yamaguchi-Iwai Y, Ogawa E, et al. Isolation of PEBP2αB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1.Oncogene. 1993;8:809–814.

    PubMed  CAS  Google Scholar 

  73. Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor.Mol Cell Biol. 1993;13:3324–3339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ogawa E, Maruyama M, Kagoshima H, et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene.Proc Natl Acad Sci U S A. 1993;90:6859–6863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y. The human members of the runt domain gene-family. AML1,2 and 3.Genomics. 1994;23:425–432.

    Article  PubMed  CAS  Google Scholar 

  76. Meyers S, Downing JR, Hiebert SW. Identification of AML1 and the (8;21) translocation protein AML1-ETO as sequence specific DNA binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions.Mol Cell Biol. 1993;13:6336–6345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ogawa E, Inuzuka M, Maruyamna M, et al. Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α.Virology. 1993;194:314–331.

    Article  PubMed  CAS  Google Scholar 

  78. Satake M, Inuzuka M, Shigesada K, Oikawa T, Ito Y. Differential expression of subspecies of polyomavirus and murine leukemia virus enhancer core binding protein, PEBP2, in various hematopoietic cells.Jpn J Cancer Res. 1992;83:714–722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Erickson P, Dessev G, Lasher RS, Philips G, Robinson M, Drabkin H. ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease.Blood. 1996;88:1813–1823.

    PubMed  CAS  Google Scholar 

  80. Corsetti MT, Calabi F. Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators.Blood. 1997;89:2359–2368.

    PubMed  CAS  Google Scholar 

  81. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.Cell. 1997; 89:747–754.

    Article  PubMed  CAS  Google Scholar 

  82. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML-1, the target of multiple chromosomal translocations in human leukemia, is essential for normal murine fetal hemato-poiesis.Cell. 1996;84:321–330.

    Article  PubMed  CAS  Google Scholar 

  83. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hemato-poiesis.Proc Natl Acad Sci U S A. 1996;93:3444–3449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wang Q, Stacy T, Miller JD, et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo.Cell. 1996;87:697–708.

    Article  PubMed  CAS  Google Scholar 

  85. Sasaki K, Yagi H, Bronson RT, et al. Absence of fetal liver hemato-poiesis in mice deficient in transcriptional coactivator core binding factor β.Proc Natl Acad Sci U S A. 1996;93:12359–12363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Niki M, Okada H, Takano H, et al. Hematopoiesis in the fetal liver is impaired by the targeted mutagenesis of the gene encoding a non-DNA binding subunit of the transcription factor, PEBP2/CBF.Proc Natl Acad Sci U S A. 1997;94:5697–5702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Cao W, Britos-Bray M, Claxton DF, et al. CBFβ-SMMHC, expressed in M4eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells.Oncogene. 1997;15:1315–1327.

    Article  PubMed  CAS  Google Scholar 

  88. Cao W, Adya N., Britos-Bray M, Liu PP, Friedman AD. The Core Binding Factor α interaction domain and the smooth muscle myosin heavy chain segment of CBFβ-SMMHC are both required to slow cell proliferation.J Biol Chem. 1998;273:31534–31540.

    Article  PubMed  CAS  Google Scholar 

  89. Strom DK, Nip J, Westendorf JJ, et al. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle.J Biol Chem. 2000;275:3438–3445.

    Article  PubMed  CAS  Google Scholar 

  90. Weston K, Bishop MJ. Transcriptional activation by the v-myb oncogene and its cellular progenitor, c-myb.Cell. 1989;58:85–93.

    Article  PubMed  CAS  Google Scholar 

  91. Dash AB, Orrico FC, Ness SA. The EVES motif mediates both intermolecular and intramolecular regulation of c-myb.Genes Dev. 1999;10:1858–1869.

    Article  Google Scholar 

  92. Sheiness D, Gardinier M. Expression of a proto-oncogene (proto-myb) in hemopoietic tissues of mice.Mol Cell Biol. 1984;4: 1206–1212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mucenski ML, McClain K, Kier AB, et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis.Cell. 1991;65:677–689.

    Article  PubMed  CAS  Google Scholar 

  94. Trauth K, Mutschler B, Jenkins NA, Gilbert DJ, Copeland NG, Klempnauer KH. Mouse A-myb encodes a transactivator and is expressed in mitotically active cells of the developing CNS, adult tests and B-lymphocytes.EMBO J. 1994;13:5994–6005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Golay J, Capucci A, Arsura M, Castellano M, Rizzo V, Introna M. Expression of c-myb and B-myb, but not A-myb, correlates with proliferation in human hematopoietic cells.Blood. 1991;77: 149–158.

    PubMed  CAS  Google Scholar 

  96. Reiss K, Travali S, Calabretta B, Baserga R. Growth regulated expression of B-myb in fibroblasts and hematopoietic cells.J Cell Physiol. 1991;148:338–343.

    Article  PubMed  CAS  Google Scholar 

  97. Kataoka K, Fujiwara KT, Noda M, Nishizawa M. MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun.Mol Cell Biol. 1994;14:7581–7591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kataoka K, Noda M, Nishizawa M. Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun.Mol Cell Biol. 1994;14:700–712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kerppola TK, Curran T. Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun.Oncogene. 1994;9:675–684.

    PubMed  CAS  Google Scholar 

  100. Kataoka K, Noda M, Nishizawa M. Transactivation activity of Maf nuclear oncoprotein is modulated by Jun, Fos and small Maf proteins.Oncogene. 1996;12:53–62.

    PubMed  CAS  Google Scholar 

  101. Sieweke MH, Tekotte H, Frampton J, Graf T. Expression of a proto-oncogene (proto-myb) in hemopoietic tissues of mice.Cell. 1996;85:49–60.

    Article  PubMed  CAS  Google Scholar 

  102. Kelly LM, Englmeier U, Lafon I, Sieweke MH, Graf T MafB is an inducer of monocytic differentiation.EMBO J. 2000;19:1987–1997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hegde SP, Zhao J, Ashmun RA, Shapiro LH. c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors.Blood. 1999;94:1578–1589.

    CAS  PubMed  Google Scholar 

  104. Hegde SP, Kumar A, Kurschner C, Shapiro LH. c-maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation.Mol Cell Biol. 1998;18:2729–2737.

    Article  PubMed Central  CAS  Google Scholar 

  105. Nguyen HQ, Hoffman-Liebermann B, Liebermann DA. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage.Cell. 1993;72: 197–209.

    Article  PubMed  CAS  Google Scholar 

  106. Krishnaraju K, Nguyen HQ, Liebermann DA, Hoffman B. The zinc finger transcription factor Egr-1 potentiates macrophage differentiation of hematopoietic cells.Mol Cell Biol. 1995;15: 5499–5507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Krishnaraju K, Hoffman B, Liebermann DA. The zinc finger transcription factor Egr-1 activates macrophage differentiation in M1 myeloblastic leukemia cells.Blood. 1998;92:1957–1966.

    PubMed  CAS  Google Scholar 

  108. Krishnaraju K, Hoffman B, Liebermann DA. Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages.Blood. 2001;97:1298–1305.

    Article  PubMed  CAS  Google Scholar 

  109. Lee SL, Wang Y, Milbrandt J. Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1).Mol Cell Biol. 1996;16: 4566–4572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rauscher FJ, Morris JF, Tournary OE, Cook DM, Curran T. Binding of the Wilms tumor locus zinc finger protein to the EGR-1 consensus sequence.Science. 1990;250:1259–1262.

    Article  PubMed  CAS  Google Scholar 

  111. Smith SI, Weil D, Johnson GR, Boyd AW, Li CL. Expression of the Wilms’ tumor suppressor gene, WT1, is upregulated by leukemia inhibitory factor and induces monocytic differentiation in M1 leukemic cells.Blood. 1998;91:764–773.

    PubMed  CAS  Google Scholar 

  112. Inoue K, Tamaki H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia.Blood. 1998;91:2969–2976.

    PubMed  CAS  Google Scholar 

  113. Loeb DM, Friedman AD, Sukumar SV. A WT1 isoform potentiates G-CSF-mediated granulocytic differentiation and downregulates cyclin E [abstract].Blood. 2000;96:284a.

    Google Scholar 

  114. de The H, Marchio A, Tiollais P, Dejean A. Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes.EMBO J. 1989;8:429–433.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tsai S, Collins SJ. A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage.Proc Natl Acad Sci U S A. 1993;90:7153–7157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Labrecque J, Allan D, Chambon P, Iscove NN, Lohnes D, Hoang T. Impaired granulocytic differentiation in vitro in hematopoietic cells lacking retinoic acid receptors alpha1 and gamma.Blood. 1998;92:607–615.

    PubMed  CAS  Google Scholar 

  117. Barberis A, Superti-Furga G, Busslinger M. Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter.Cell. 1987;50:347–359.

    Article  PubMed  CAS  Google Scholar 

  118. Luo W, Skalnik DG. CCAAT displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal gp91-phox promoter.J Biol Chem. 1996;271:18203–18210.

    Article  PubMed  CAS  Google Scholar 

  119. Skalnik DG, Strauss EC, Orkin SH. CCAAT-displacement protein as a repressor of the myelomonocytic-specific gp91-phox promoter.J Biol Chem. 1991;266:16736–16744.

    PubMed  CAS  Google Scholar 

  120. Lawson ND, Khanna-Gupta A, Berliner N. Isolation and characterization of the cDNA for mouse neutrophil collagenase: demonstration of shared negative regulatory pathways for neutrophil secondary granule protein gene expression.Blood. 1998:91:2517–2524.

    PubMed  CAS  Google Scholar 

  121. Khanna-Gupta A, Zibello T, Sun H, Lekstrom-Himes J, Berliner N. C/EBPε mediates myeloid differentiation and is regulated by CCAAT displacement protein (CDP/cut).Proc Natl Acad Sci U S A. 2001;98:8000–8005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Saffer JD, Jackson SP, Annarella MB. Developmental expression of Sp1 in the mouse.Mol Cell Biol. 1991;11:2189–2199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Friedman.

About this article

Cite this article

Friedman, A.D. Transcriptional Regulation of Myelopoiesis. Int J Hematol 75, 466–472 (2002). https://doi.org/10.1007/BF02982108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982108

Key words

Navigation