Skip to main content
Log in

New maastrichtian oxygen and carbon isotope record: Additional evidence for warm low latitudes

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The Cretaceous period was generally characterized by greenhouse conditions. Nevertheless, our data on isotopic composition of biogenic carbonates from the Koryak Upland and Sakhalin (Russian Far East) show that during the Maastrichtian, temperatures dropped sharply at high and middle latitudes, with only a slight warming in the early Late Maastrichtian. At the same time, there is contradictory evidence on climatic conditions for low latitude areas during Maastrichtian time. The new and previously published isotopic data on Maastrichtian mollusks in the Western Interior Seaway (North America) (WIS) and some other areas suggest that tropical deep-sea surface temperatures calculated from the oxygen isotopic composition of the majority of investigated Maastrichtian planktic foraminifera are, obviously, underestimated. Unusually low isotopic temperatues were obtained for tropical planktic foraminifera. This probably reflects both local conditions provoked, first of all, by the influence of tropical upwelling zones, and the ability of Maastrichtian planktic foraminifera to migrate within a large vertical interval in the tropical zone in conditions of weakly stratified (well-mixed) ocean. The average tropical deep-sea surface paleotemperature estimates for the Maastrichtian could have been about 26.6–30.2°C, but, apparently, did not reach the level denoted for the Late Albian and Turonian (32±3°C). Negative carbon-isotopic shifts at the end of the early Maastrichtian and the Cretaceous-Tertiary boundary time seem to be connected with the fall of temperature and eventual reduction of oxygen content in the atmosphere and hydrosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablaev, A.G., Khudik, V.D., Biryulina, M.G., Pletnev, S.P. and Ashurov, A.A., 1992, Biostratigraphy of the Musau Trench (Caroline Basin). Geo-Marine Letters, Springer-Verlag, New York, 12, 236–239.

    Google Scholar 

  • Abramovich, S., Keller, G., Stube, D. and Berner, Z., 2003, Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. Palacogcography, Palacoclimatology, Palacoccology, 202, 1–29.

    Article  Google Scholar 

  • Anderson, T.F. and Arthur, M.A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and palacoenvironmental problems. Stale isotopes in sedimentary gcology. SEPM Short Course, 10, 1–151.

    Google Scholar 

  • Archana Tewari, Hart, M.B. and Watkison, M.P., 1996, A reviced lithostratigraphic classification of the Cretaceous rocks of the Trichipoly District, Cauvery Basin, and Southeast India. Contributions of XV Indian Colloquium on Micropal. Stral. Dchra Dun, p. 789–800.

  • Barrera, E., 1994, Global environmental changes preceding the Cretaccous-Tertiary boundary: Early-late Maastrichtian transition. Geology, 22, 877–880.

    Article  Google Scholar 

  • Barrera, E., Huber, B.T., Savin, S.M. and Webb, P.-N., 1987a, Antarctic marine temperatures: Late Campanian through early Paleocene. Palcooceanography, 2(1), 21–47.

    Article  Google Scholar 

  • Barrera, E., Savin, S.M., Thomas, E. and Jones, C.-E., 1987b, Evidence for thermohaline-circulation reversal controlled by sealevel change in the latest Cretaceous. Geology, 25(8), 715–718.

    Article  Google Scholar 

  • Barron, E.J., Fawcett, P.J., Peterson, W.H., Pollard, D. and Thompson, S., 1995, A ‘simulation’ of mid-Cretaceous climate. Palcoceanography, 10, 953–962.

    Article  Google Scholar 

  • Basov, I.A. and Vishnevskaya, V.S., 1991, Stratigraphiya verkhnego mezozoya Tikhogo okeana (Stratigraphy of the Upper Mesozoic of the Pacific ocean). Nauka, Moskva, 200 p. (in Russian).

    Google Scholar 

  • Boersma, A. and Shackleton, N.J., 1981, Oxygen-and carbon-isotope variations and planktonic-foraminifer depth habitats, late Cretaceous to Palcocene, Central Pacific, Deep Sea Drilling Project Sites 463 and 465. Initial reports of the Deep Sea Drilling Project, vol. 62 (Marjuro Atoll, Marshall Island to Honolulu, Hawaii), Washington (U.S. Printing Office), pp. 513–526.

  • Bogdanov, Y.A., Sorokhtin, O.G., Zonenshain, L.P., Kuptsov, V.M., Lisitsina, N.A. and Podrazhanskij, A.M., 1990, Zhelezo-margantsevye korki i konkretsii podvodnykh gor Tikhogo okeana (Iron-manganous crusts and concretions of underwater mountains of the Pacific). Nauka, Moskva, 229 p., 81 figs., 15 pls. (in Russian).

    Google Scholar 

  • Bowen, R., 1961, Palcotemperature analyses of Mesozoic Belemnoidea from Germany and Poland. Journal of Geology, 69(1), 75–83.

    Article  Google Scholar 

  • Bowen, R., 1969, Palcotemperature analysis. Methods in geochemistry and geophysics. Nedra, Leningrad, 207 p. (in Russian).

    Google Scholar 

  • Burma, A., 1986, Palcotemperatures and carbon isotope ratio in the Campanian trough Palcocene interval and the Cretaceous-Tertiary boundary at the Atlantic ocean. In: Berggren, U. and Kauverting, J. Van (eds.), Katastrophy vistorii Zemli. Novyj uniformizm. (Catastrophes in the Earth history. New Uniformism) Moscow, Mir, pp. 255–284 (in Russian).

    Google Scholar 

  • Caron, M., 1985, Cretaceous planktonic foraminifera. In: Bolli, H.B., Sounders, J.B. and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, 17–86.

    Google Scholar 

  • Clarke, L.J. and Jenkyns, H.C., 1999, New oxygen isotope evidence for long-term Cretaceous climatic change in the South Hemisphere. Geology, 27(8), 699–702.

    Article  Google Scholar 

  • Cochran, J.K., Landman, N.H., Turckian, K.K., Michard, A. and Schrag, D.P., 2003, Palcoceanography of the Late Cretaceous (Maastrichtian) Western Interior Scaway of North America: evidence from Sr and O isotopes. Palacogeography, Palacoclimatology, Palacoccology, 191, 45–64.

    Article  Google Scholar 

  • Davis, T.T. and Hooper, P.R., 1963, The determination of the calcite: aragonite ratio in molluse shells by x-ray diffraction. Mineralogical Magazine, 33(262), 608–612.

    Article  Google Scholar 

  • D'Hondt, S. and Arthur, M.A., 1995, Interspecies variation in stable isotopic signals of Maastrichtian planktonic foraminifera. Paleoceanography, 10(1), 123–135.

    Article  Google Scholar 

  • D'Hondt, S. and Arthur, M.A., 1996, Late Cretaceous oceans and the cool tropic paradox. Science, 271, 1838–1841.

    Article  Google Scholar 

  • Douglas, R.G. and Savin, S.M., 1971, Isotopic analyses of planktonic formation from the Cenozoic of the Northwest Pacific, LEG 6. Initial reports of the Deep Sea Drilling Project, 6, 1123–1127.

    Google Scholar 

  • Douglas, R.G. and Savin, S.M., 1973, Oxygen and carbon isotope analyses of Cretaccous and Tertiary foraminifera from the Central North Pacific. Initial reports of the Deep Sea Drilling Project, 17, 551–605.

    Google Scholar 

  • Douglas, R.G. and Savin, S.M., 1975, Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean. Initial reports of the Deep Sea Drilling Project, 32, 509–520.

    Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H.A. and Urey, H.C., 1953, Revised carbonate-water isotopic temperature scale. Geological Society of America, Bulletin, 64(11), 1315–1326.

    Article  Google Scholar 

  • Golbert, A.V., 1987, Osnovy regionalnoi palcoklimatologii (Basics of regional palcoclimatology). Mosow, Nedra, 223 p. (in Russian).

    Google Scholar 

  • Grossman, E.L. and Ku, T.-L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology, 59, 59–74.

    Article  Google Scholar 

  • Grossman, E.L., Zhang, C. and Yancey T.E., 1991, Stable-isotope stratigraphy of brachiopods from Pensilvanian shales in Texas. Geological Society of America, Bulletin, 103, 953–965.

    Article  Google Scholar 

  • Houston, R.M. and Huber, B.T., 1998, Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotope trends in some Late Cretaceous planktonic foraminifera. Marine Micropalcontology, 34, 29–46.

    Article  Google Scholar 

  • Houston, R.M., Huber B. and Spero, H.J., 1999, Seze-related isotopic trends in some Maastrichtian planktic foraminifera: methodological comparisons, intraspecific variability, and evidence for photosymbiosis. Marine Micropalcontology, 36, 169–188.

    Article  Google Scholar 

  • Huber, B.T., Hodell, D.A. and Hamilton, C.P., 1995, Mid-to Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America, Bulletin, 107, 1164–1191.

    Article  Google Scholar 

  • Huber, B.T., Norris, R.D. and MacLeod, K.G., 2002, Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30(2), 123–126.

    Article  Google Scholar 

  • Jagt, J.W.M., 1995, The Maastrichtian of the type area (Southern Limburg, the Netherlands): recent developments. Second International Symposium on Cretaceous stage boundaries. Al. Excursion to Maastricht. Institut royal des Sciences Naturelles de Belgique, Brussels, Belgium, pp. 2–15.

    Google Scholar 

  • Jenkyns, H.C., Forster, A., Schouten, S. and Damsté, J.S.S., 2004, High temperatures in the Late Cretaceous Aretic Ocean. Nature, 436(16), 888–892.

    Article  Google Scholar 

  • Kalishevich, T.G., Zaklinskaya, E.D. and Serova, M.Y., 1981, Razvitiye organicheskogo mira Tikhookcanskogo poyasa na rubezhe mezozoya i kainozoya. Foraminifery, mollyuski i palinoflora Severo-Zapadnogo sektora (Evolution of the Pacific Belt biota during Mesozoic-Cenozoic boundary time. Foraminifera, mollusks and palynoflora). Nauka, Moscow, 164 pp. (in Russian).

    Google Scholar 

  • Kauffman, E.G. and Johnson, C.C., 1988, The morphological and ecological evolution of middle and Upper Cretaceous reef-building rudists. Palaios, 3, 194–216.

    Article  Google Scholar 

  • Kobashi, T., Grossman, E.L., Yancey, T.E. and Dockery III, D.T., 2001, Recvaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes. Geology, 29(11), 983–986.

    Article  Google Scholar 

  • Kobashi, T., Grossman, E.L., Yancey, T.E. and Dockery III, D.T. and Ivany, L.C., 2004, Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Voast continental shelf (USA). Palcoceanography, 19, in press.

  • Landman, N.H. and Waage, K.M., 1993, Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dacota and Wyoming. Bulletin of the American Museum of Natural History, 215, 1–257.

    Google Scholar 

  • Larson, N.L., 2003, The Late Campanian (Upper Cretaccous) cephalopod fauna of the Coon Creck Formationmat its type locality. Coon Creek Monograph, SE Palcontological Society Field Trip Guidebook. 60 p.

  • Larson, R.L., Moberly, R., Bukry, D., Foreman, H.P., Gardner, J.V., Keene, J.B., Lancelot, Y., Luterbacher, H., Marshall, M.C. and Matter, A., 1975, Site 303: Japanese magnetic lincations. Initial Reports of the Deep Sea Drilling Projcet, 32, 17–43.

    Google Scholar 

  • Lewy, Z., 1995, Hypothetical endosymbiotic zooxanthellac in rudists are not needed to explain their ecological nishes and thick shells in comparison with hermatypic corals. Cretaceous Research, 16(1), 25–37.

    Article  Google Scholar 

  • Lowenstam, H.A. and Epstein, S., 1954, Palcotemperatures of post-Aptian Cretaceous as determined by the oxygen isotope methods. Journal of Geolgoy, 62(3), 207–248.

    Google Scholar 

  • Lowenstam, H.A. and Epstein, S., 1959, Cretaceous palcotemperatures as determined by the oxygen isotope method, their relations to and the nature of rudistid reefs. XX International Geological Congress (Mexico, 1956). El sistema Cretacico, 1. Mexico, pp. 65–76.

  • MacLeod, K.G. and Huber, B.T., 1996, Reorganization of deep ocean circulation accompany in a Late Cretaceous extinetion event. Nature, 380, 422–425.

    Article  Google Scholar 

  • MacLeod, K.G. and Huber, B.T., 2001, The Maastrichtian record at Blake Nose (western North Atlantic) and implications for global palacoceanographic and biotic changes. In: Kroon, D., Norris, R.D., Klaus, A. (eds.), Western North Atlantic Palacogene and Cretaceous Palacoceanography. Geological Society, London, Special Publication, 183, 11–130.

    Google Scholar 

  • MacLeod, K.G., Huber, B.T. and Ducharme, M.L., 2000, Palcontological and geochemical constraints on the deep ocean during the Cretaceous greenhouse interval. In: Huber, B.T., MacLeod, K.G., Wing, S.L. (eds.), Warm climates in Earth history. Cambridge University Press, pp. 241–274.

  • McConnaughy, T., 1989,13C and18O isotopic disequilibrium in biological carbonates, II. In vitro simulation of kinetic isotopic effects. Geochimica and Cosmochimica Acta, 53, 163–171.

    Article  Google Scholar 

  • Melnikov, M.E., Shkolnik, E.L., Pulyaeva, I.A. and Popova, T.V., 1995a, Results of the detailed study of oxide ferromanganesian and phosphorite mineralization on the IOAN guyot (Western Pacific). Tikhookeanskaya Geologiya, 14(5), 4–20 (in Russian).

    Google Scholar 

  • Melnikov, M.E., Shkolnik, E.L., Senkovva, T.V., Pulyaeva, I.A., Popova, T.V. and Mechetin, A.V., 1995b, Geological structure and minerals of Batisa guyot. Tikhookeanskaya Geologiya, 1, 23–40, 2 pls. (in Russian).

    Google Scholar 

  • Miller, K.G., Barrera, E., Olsson, R.K., Sugarman, P.J. and Savin, S.M., 1999, Docs ice drive Maastrichtian custasy? Geology, 27, 783–786.

    Article  Google Scholar 

  • Moro, A., Skelton, P.W. and Eosoviæ, V., 2002, Palacoenvironmental setting of rudists in the Upper Cretaceous (Turonian-Maastrichtian) Adriatic Carbonate Platform (Croatia), based on sequence stratigraphy. Cretaceous Research, 23, 489–508.

    Article  Google Scholar 

  • Moriya, K., Nishi, H., Kawahata, H., Tanabe, K. and Takayanagi, Y., 2003, Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern pacific thermal structure. Geology, 31(2), 167–170.

    Article  Google Scholar 

  • Naidin, D.P., 2001, Meridional connections of Late Cretaceous marine biota of the Northern Hemisphere. Tikhookeanskaya Geologiya, 20(1), 8–14 (in Russian).

    Google Scholar 

  • Norris, R.D. and Wilson, P.A., 1998, Lower latitude sea surface temperature for the mid-Cretaceous and the evolution of planktonic foraminifera. Geology, 26, 823–826.

    Article  Google Scholar 

  • Packham, G.M. and Andrews, J.E., 1975, Results of leg 30 and the geological history of the South-West Pacific are marginal sea complex. Initial reports of the Deep Sea Drilling Project, 30, 691–705.

    Google Scholar 

  • Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Bown, G., Nicholas, Ch.J., Olsson, K., Shackleton, N.J. and Hall, M.A., 2001, Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413(4), 481–487.

    Article  Google Scholar 

  • Pergament, M.A., 1961, Upper Cretaceous stratigraphy of north-castern Kamchatka. Trudy Geologicheskogo Instituta Akademii Nauk SSSR, 39, 1–147 (in Russina).

    Google Scholar 

  • Pirrie, D. and Marshall, J.D., 1990, High-palcolatitude Late Cretaceous palcotemperatures: New data from James Ross Island, Antaretica. Geology, 18(1), 31–34.

    Article  Google Scholar 

  • Pletnev, S.P. and Buryulina, M.G., 1989, Biostratigraphicheskie issledovaniya zapadnoi chasti Tikhogo okeana (Novogibridskie zheloba, khrebet Mikhelsona i Magellanovy gory) (Biostratigraphic researches of the western Pacific (New Gebrid trenches, Mikhelson ridge and Magellan Rise)). Preprint. Dalnevostochnoye Otdeleniye Akademii Nauk SSSR, Vladivostok, 36 p. (in Russian).

    Google Scholar 

  • Price, G.D. and Hart, M.B., 2002, Isotopic evidence for Early to mid-Cretaceous occan temperature variability. Marine Micropalcontology, 46, 45–58.

    Article  Google Scholar 

  • Savin, S.M., 1977, The history of the earth's surface temperature during the past 100 million years. Annual Revew of Earth and Planetary Sciences 5, 319–355.

    Article  Google Scholar 

  • Schrag, D.P., 1999, Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures. Chemical Geology, 161, 215–224.

    Article  Google Scholar 

  • Shkolnik, E.L., Tang Tianfu, Sue Yaosong and Yuo Qonglin, 1996, Electron microscope study of phosphorite in IOAN guyot, the West Pacific. Tikhookeanskaya Geologiya, 15(1), 102–109 (in Russian).

    Google Scholar 

  • Skelton, P.W. and Wright, V.P., 1987, Caribbean rudist bivalve in Oman, Island hopping across the Pacific in the Late Cretaccous. Palacontology, 30, 505–529.

    Google Scholar 

  • Smyshlyacva, O.P., Zakharov, Y.D., Shigeta, Y., Tanabe, K., Ignatiev, A.V., Velivetskaya, T.A., Popov, A.M., Afanasyeva, T.B. and Moria, K., 2002, Optimal temperatures of growth in Campanian ammonoids of Sakhaline (Krilyon) and Hokkaido: oxygen and carbon isotopic data.In: Cretaceous continental margin of East Asia: stratigraphy, sedimentation, and tectonics: The IVth Intern. Symp. of IGCP 434, September 2002 Abstracts. Khabarovsk, p. 97–98.

  • Smyshlyaeva, O.P., Zakharov, Y.D., Shigeta, Y., Velivetskaya, T.A., Ignatiev, A.V., Afanasyeva, T.B. and Zonova, T.D., 2004, New data on stable isotopes of Cretaceous mollusks of Europe and Mangyshlak and the problem of ontogenetic vertical migration of Albian cephalopods. In: Cretaceous System in Russia: problems of stratigraphy and palcogcography. Abstracts of 2nd All-Russian Meeting (S-Peterburg, 2004). S.-Peterburg State University, S.-Peterburg, p. 74 (in Russian).

    Google Scholar 

  • Sokolova, E.A., 1998, Palcookcanologicheskie rekonstruktsii Tikhogo okcana dlya kontsa pozdnego mela (Maastricht) po planktonnym foraminiferam. Moskva (Palcoceanological reconstruction of the Pacific ocean for the end of the Cretaceous (Maastrichtian)). Vserossijskij Institut Nauchno-Tekhnicheskoj Informatsii (VINITI), 1998 (1351–V98), 174 p. (in Russian).

  • Sokolova, E.A., 1999, Evolution of climatic zones in the Maastrichtian from planktonic foraminifera. Doklady Akademii Nauk, 367(1), 99–101 (in Russian).

    Google Scholar 

  • Stepanov, V.N., 1974, Mirovoy okean (World Occan). Znaniye, Moscow, 255 p. (in Russian).

    Google Scholar 

  • Steuberg, T., 1996, Stable isotope selerochronology of rudist bivalves: Growth rates and Late Cretaceous seasonality. Geology, 24(4), 315–318.

    Article  Google Scholar 

  • Stevens, G.R., Clayton R.N., 1971, Oxygen isotope studies on Jurassic and Cretaceous belemnites from New Zealand and their biogeographic significance. New. Zealand. Journal of Geology and Geophysics, 14, 829–897.

    Google Scholar 

  • Stott, L.D and Kennett, J.P., 1990, The palcoceanographic and paleoclimatic signature of the Cretaceous/Palcogene boundary in the Antarctic: stable isotopic results from ODP LEG 113. Proceedings of the Ocean Drilling Program, 113, 829–846.

    Google Scholar 

  • Teiss, R.V. and Naidin, D.P., 1973, Paleotermometriya i izotopnyj sostav kisloroda organogennukh karbonatov (Palcotermometry and oxygen isotopic composition of organogenic carbonates). Moscow, Nauka, 255 p. (in Russian).

    Google Scholar 

  • Vereschagin, V.N., 1977, Melovaya sistema Dalnego Vostoka (Cretaceous system of Far East). Nedra, Leningrad, 208 p. (in Russian).

    Google Scholar 

  • Wilson, P.A. and Norris, R.D., 2001, Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412, 425–429.

    Article  Google Scholar 

  • Wilson, P.A. and Opdyke, B.N., 1996, Equatorial sea surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology, 24(6), 555–558.

    Article  Google Scholar 

  • Wilson, P.A., Norris, R.D. and Cooper, M.J., 2002, Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropies on Demerara Rise. Geology, 30(7), 607–610.

    Article  Google Scholar 

  • Yildiz, A. and Özdemir, Z., 1999, Biostratigraphic and isotopic data on the Coreklik Member of the Hekimhan Formation (Campanian-Maastrichtian) of SE Turkey and their palacoenvironmental significance. Cretaceous Research, 20, 107–117.

    Article  Google Scholar 

  • Zachos, J.C., Stott, L.D. and Lohmann, K.C., 1994, Evolution of carly Cenozoic marine temperatures. Palcoceanography, 9, 353–387.

    Article  Google Scholar 

  • Zakharov, Y.D., Boriskina, N.G., Ignatyev, A.V., Tanabe, K., Shigeta, Y., Popov, A.M., Afanasyeva, T.B. and Maeda, H., 1999, Palaeotemperature curve for the Late Cretaceous of the northwestern circum-Pacific. Cretaceous Reseach, 20, 685–697.

    Article  Google Scholar 

  • Zakharov, Y.D., Grabovskaya, V.S. and Kalishevich, T.G., 1984a, Late Cretaceous succession of marine communities in south Sakhalin and climatic peculiarities of North Western Pacific. Sistematika i cvolyutsiya bespozvonochnykh Dalnego Vostoka (Systematics and evolution of Far Eastern invertebrates). Dalnevostocnyj Nauchnyj Tsentr Akademii Nauk SSSR, Vladivostok, p. 41–90 (in Russian).

    Google Scholar 

  • Zakharov, Y.D., Ignatiev, A.V. and Khudolozhkin, V.O., 1984b, Stable oxygen and carbon isotopes of Cretaceous-Palcogene invertebrates. Izvestiya Akademii Nauk SSSR, Scriya Geologicheskaya, 2, 24–34.

    Google Scholar 

  • Zakharov, Y.D., Ignatiev, A.V., Ukhaneva, N.G. and Afanasyeva, T.B., 1996, Cretaceous ammonoid succession in the Far East (South Sakhalin). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique., Sciences de la Terre, 66, 109–127.

    Google Scholar 

  • Zakharov, Y.D., Melnikov, M.E., Khudik, V.D., Punina, T.A., Pletnev, S.P. and Smyshlyacva, O.P., 2003a, A new find of ammonoids (Cephalopoda) in the oceanic floor deposits. Tikhookeanskaya Geologiya, 22(5), 51–57 (in Russian).

    Google Scholar 

  • Zakharov, Y.D., Naidin, D.P. and Teiss, R.B., 1975, Oxygen isotope composition in Early Triassic cephalopod shells of Arctic Siberia and salinity of boreal basins at the earliest Mesozoic. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 1975(4), 101–113 (in Russian).

    Google Scholar 

  • Zakharov, Y.D., Smyshlyaeva, O.P., Popov, A.M., Golozubov, V.V., Ignatiev, A.V., Velivetskaya, T.A., Tanabe, K., Shigeta, Y., Maeda, H., Afanasyeva, T.B., Cherbadzhi, A.K., Bolotsky, Y.L. and Moriya, K., 2002, Oxygen and carbon isotope, composition of organogenic carbonates of the Koryak Upland. Paper 1. Penzhinskaya Guba. Tikhookeanskaya Geologiya, 21(2), 55–73 (in Russian).

    Google Scholar 

  • Zakharov, Y.D., Smyshlyaeva, O.P., Shigeta, Y., Tanabe, K., Maeda, H., Ignatiev, A.V., Velivetskaya, Popov, A.M., Afanasyeva, T.A. and Moriya, K., 2003b, Optimum growth temperatures for Campanian ammonoids in Sakhalin and Hokkaido on stable isotope data. Bulleten. Moskovskogo Obschestva Ispytateley Prirody, Otdeleniye Geologii, 78(6), 46–56 (in Russian).

    Google Scholar 

  • Zakharov, Y.D., Nagendra, R., Smyshlyacva, O.P., Popov, A.M., Velivetskaya, T.A. and Afanasyeva, T.B., 2006, Mass oxygen isotope palaeotemperature measurements on Cretaceous fossils from Southern India (Trichinopoly area) and their palaeogeographical significance. The Second International Palacontological Congress (June 17 T.A., 21, 2006, Bejing, China, Abstracts. Bejjing 215 T.A., 216.

  • Zeebe, R.E., 2001, Seawater pH and isotopic paleotemperatures of Cretaceous occans. Palaeogeography, Palacoclimatology, Palacoecology, 170, 49–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri D. Zakharov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, Y.D., Popov, A.M., Shigeta, Y. et al. New maastrichtian oxygen and carbon isotope record: Additional evidence for warm low latitudes. Geosci J 10, 347–367 (2006). https://doi.org/10.1007/BF02910375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02910375

Key words

Navigation