Monatshefte für Mathematik

, Volume 103, Issue 2, pp 145–157

An Ω-theorem for an error term related to the sum-of-divisors function


  • Y. -F. S. Pétermann
    • Section de Mathématiques

DOI: 10.1007/BF01630684

Cite this article as:
Pétermann, Y.-.S. Monatshefte für Mathematik (1987) 103: 145. doi:10.1007/BF01630684


Let σ denote the sum-of-divisors function, and set\(E_1 (x): = \sum\limits_{n = x} {\sigma (n) - \frac{{\pi ^2 }}{{12}}x^2 }\). Gronwall and Wigert proved (independently) in 1913 and 1914, respectively, thatE1 (x)=Ω (x log logx). In this paper we obtain the more preciseE1 (x)=Ω(x log logx). The method consists in averaging\(E_{ - 1} (x): = \sum\limits_{n = x} {\frac{{\sigma (n)}}{n} - \left( {\frac{{\pi ^2 }}{6}x - \tfrac{1}{2}\log x} \right)}\) over suitable arithmetic progressions, and was suggested by the work ofP. Erdös andH. N. Shapiro [Canad. J. Math. 3–4, 375–385 (1951)] on the error term corresponding to Euler's functions,\(\sum\limits_{n = x} {\varphi (n) - \frac{3}{{\pi ^2 }}x^2 }\).

Copyright information

© Springer-Verlag 1987