Skip to main content
Log in

[99mTc]TRODAT-1: A novel technetium-99m complex as a dopamine transporter imaging agent

  • Original article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Technetium-99m is the most commonly used radionuclide in routine nuclear medicine imaging procedures. Development of99mTc-labeled receptor-specific imaging agents for studying the central nervous system is potentially useful for evaluation of brain function in normal and disease states. A novel99mTc-labeled tropane derivative, [99mTc]TRODAT 1, which is useful as a potential CNS dopamine transporter imaging agent, was evaluated and characterized. After i.v. injection into rats, [99mTc]TRODAT-1 displayed specific brain uptake in the rat striatal region (striatum-cerebellum/cerebellum ratio 1.8 at 60 min), where dopamine neurons are concentrated. The specific striatal uptake could be blocked by pretreating rats with a dose of competing dopamine transporter ligand, ß-CIT (or RTI-55, i.v., 1 mg/kg). However, the specific striatal uptake of [99mTc]TRODAT-] was not affected by co-injection of excess free ligand (TRODAT-1, up to 200 μg per rat) or by pretreating the rats with haloperidol (i.v., 1 mg/kg). The specific uptake in striatal regions of rats that had prior 6-hydroxydopamine lesion in the substantia nigra area showed a dramatic reduction. The radioactive material recovered from the rat striatal homogenates at 60 min after i.v. injection of [99mTc]TRODAT-1 showed primarily the original compound (>95%), a good indication of in vivo stability in brain tissue. Similar and comparable organ distribution patterns and brain regional uptakes of [99mTc]TRODAT-1 were obtained for male and female rats. Ex vivo autoradiography results of rat brain sections further confirmed the high uptake and retention of [99mTc]TRODAT-1 in the striatal region. In vitro binding studies measuring the affinity to dopamine transporters for the free ligand, TRODAT-1, and a nonradioactive rhenium derivative, Re-TRODAT-1, showed K i values of 9.7 nM and 14.1 nM, respectively. Behavioral studies in rats using the free ligand, TRODAT-1 and Re-TRODAT-1 indicated that, unlike other tropane derivatives, they displayed no effect on locomotor activity, suggesting low toxicity. These results strongly support the conclusions that this novel99mTc radioligand binds selectively to dopamine transporters in the brain and that is is potentially useful for in vivo assessment of the loss of dopamine neurons in Parkinson's and other neurodegeneralive diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhar MJ, Sanchez-Roa PM, Wong DF, Dannals RF, Grigoriadis DE, Lew R, Milberger M. Dopamine transporter: biochemistry, pharmacology and imaging.Eur Neurol 1990; 30 Suppl 1: 15–20.

    PubMed  Google Scholar 

  2. Shimada S, Kitayama S, Lin C-L, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA.Science 1991; 254: 576–277.

    PubMed  Google Scholar 

  3. Kaufman MJ, Madras BK. Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson's diseased striatum.Synapse 1991; 49: 43–49.

    Google Scholar 

  4. Allard P, Alafuzoff I, Carlsson A, Erikson K, Ericson E, Gottfries CG, Marcusson JO. Loss of dopamine uptake sites labeled with [3H]GBR-12935 in Alzheimer's disease.Eur Neurol 1990; 30: 181–185.

    PubMed  Google Scholar 

  5. Fearnley JM, Less AJ. Aging and Parkinson's disease: substantia nigra regional selectivity.Brain 1991; 114: 2283–2301.

    PubMed  Google Scholar 

  6. Volkow ND, Fowler JS, Gatley SJ, Logan J, Wang G-J, Ding Y-S, Dewey S. PET evaluation of the dopamine system of the human brain.J Nucl Med 1996; 37: 1242–1253.

    PubMed  Google Scholar 

  7. Frost JJ, Rosier AJ, Reich SG, Smith JS, Ehlers MD, Snyder SH, Ravert HT, Dannals RF Positron emission tomographic imaging of the dopamine transporter with [11C]-WIN 35428 reveals marked declines in mild Parkinson's disease.Ann Neurol 1993; 34: 423–431.

    PubMed  Google Scholar 

  8. Laihinen AO, Rinne JO, Nägren K et al. PET studies on brain monoamine transporters with carbon-11-ß-CIT in Parkinson's disease.J Nucl Med 1995; 36: 1263–1267.

    PubMed  Google Scholar 

  9. Aquilonius S-M, Bergström K, Eckernäs S-Å, Hartvig P, Leenders KL, Lundquist H, Antoni G, Gee A, Rimland A, Ulin J, Långström B. In vivo evaluation of striatal dopamine re-uptake sites using [11C]nomifensine and positron emission tomography.Acta Neurol Scand 1987, 76: 283.

    PubMed  Google Scholar 

  10. Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, Baldwin RM, Fussel B, Smith EO, Charney DS. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson's disease.Ann Neurol 1995; 38: 589–598.

    PubMed  Google Scholar 

  11. Innis RB, Seibyl JP, Scanley BE et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson's disease. Proc Natl Acad Sci USA 1993; 90: 11965–11969.

    Google Scholar 

  12. Shaya EK, Scheffel U, Dannals RF, Ricaurte GA, Carroll FI, Wagner HN Jr, Kuhar MJ, Wong DE In vivo imaging of dopamine reuptake sites in the primate brain using single photon emission computed tomography (SPECT) and iodine-123 labeled RTI-55.Synapse 1992; 10: 169–172.

    PubMed  Google Scholar 

  13. Kung M-P, Essman WD, Frederick D, Meegalla S, Goodman M, Mu M, Lucki I, Kung HE IPT: a novel iodinated ligand for the CNS dopamine transporter.Synapse 1995; 20: 316–324.

    PubMed  Google Scholar 

  14. Malison RT, Vessotskie JM, Kung M-P, McElgin W, Romaniello G, Kim H-J, Goodman MM, Kung HF Striatal dopamine transporter imaging in nonhuman primates with iodine-123-IPT SPECT.J Nucl Med 1995; 36: 2290–2297.

    PubMed  Google Scholar 

  15. Mozley PD, Stubbs JB, Kim H-J, McElgin W, Kung M-P, Meegalla S, Kung HE Dosimetry of an iodine-123-labeled tropane to image dopamine transporters.J Nucl Med 1996; 37: 151–159.

    PubMed  Google Scholar 

  16. Neumeyer JL, Wang S, Gao Y, Milius RA, Kula NS, Campbell A, Baldessarini RJ, Zea-Ponce Y, Baldwin RM, Innis RB. N-ω-Fluoroalkyl analogs of (1R)-2β-carbomethoxy-3β-(4-iodophenyl)-tropane (β-CIT): radiotracers for positron emission tomography and single photon emission computed tomography imaging of dopamine transporters.J Med Chem 1994; 37: 1558–1561

    PubMed  Google Scholar 

  17. Kuikka JT, Akerman K, Bergstrom KA, Karhu J, Hiltunen J, Haukka J, Heikkinen J, Tiihonen J, Wang S, Neumeyer JL. Iodine-123-labeledN-(2-fluoroethyl)-2β-carbomethoxy-3β-(4-iodophenyl)nortropane for dopamine transporter imaging in the living human brain.Eur J Nucl Med 1995; 22: 682–686.

    PubMed  Google Scholar 

  18. Abi-Dargham A, Gandelsman MS, DeErausquin GA, Zea-Ponce Y, Zoghbi SS, Baldwin RM, Laruelle M, Charney DS, Hoffer PB, Neumeyer JL, Innis RB. SPECT imaging of dopamine transporters in human brain with iodine- 123-fluoroalkyl analogs of ß-CIT.J Nucl Med 1996; 37: 1129–1133.

    PubMed  Google Scholar 

  19. Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, Macgregor RR, Hitzemann R, Logan J, Bendriem B, Galley SJ. Mapping cocaine binding sites in human and baboon brain in vivo.Synapse 1989; 4: 371–377.

    PubMed  Google Scholar 

  20. Meegalla SK, Plössl K, Kung M-P, Chumpradit S, Stevenson DA, Frederick D, Kung HF. Tc-99m labeled tropanes as dopamine transporter imaging agents.Bioconj Chem 1996; 7: 421–429.

    Google Scholar 

  21. Meegalla SK, Plössl K, Kung M-P, Chumpradit S, Stevenson DA, Kushner SA, McElgin WT, Mozley PD, Kung HE Synthesis and characterization of Tc-99m labeled tropanes as dopamine transporter imaging agents.J Med Chem 1997; 40: 9–17.

    PubMed  Google Scholar 

  22. Kung HF, Frederick D, Kim H-J, McElgin W, Kung M-P, Mu M, Mozley PD, Stevenson DA, Kushner SA, Zhuang Z-P. In vivo SPECT imaging of 5-HT1A receptors with [123I]p-MPPI in nonhuman primates.Synapse 1996; 24: 273–281.

    PubMed  Google Scholar 

  23. Kung HF, Kim H-J, Kung M-P, Meegalla SK, Plössl K, Lee H-K. Imaging of dopamine transporters in humans with technetium-99m TRODAT-1.Eur J Nucl Med 1996; 23: 1527–1530.

    PubMed  Google Scholar 

  24. Clarke RL, Heckeler ML, Gambino AJ, Daum SJ, Harding HR, Pierson AK, Teiger DG, Pearl J, Shargel LD, Goehl TJ. (Exo,exo)-2-aryltropane3-carboxylic esters, hypoglycemic agents with accompanying analgesic activity.J Med Chem 1978; 21: 1243–1253.

    PubMed  Google Scholar 

  25. Clarke RL, Bambino AJ, Pierson AK, Daum SJ. (2-Exo-3-endo)-2-aryltropane-3-carboxylic esters, a new class of narcotic antagonists.J Med Chem 1978; 21: 1235–1242.

    PubMed  Google Scholar 

  26. Neve KA, Altar A, Wone CA, Marshall JF. Quantitative analysis of [3H]spiroperidol binding to rat forebrain sections: plasticity of neostriatal dopamine receptors after nigrostriatal injury.Brain Res 1984; 302: 9–18.

    PubMed  Google Scholar 

  27. Munson PJ, Rodbard D. LIGAND: a versatile computerized approach for characterization of ligand binding system.Anal Biochem 1980; 107: 220–239.

    PubMed  Google Scholar 

  28. Essman WD, McGonigle P, Lucki I. Anatomical differentiation within the nucleus accumbens of the locomotor stimulatory actions of selective dopamine agonists andd-amphetamine.Psychopharmacology 1993; 112: 233–241.

    PubMed  Google Scholar 

  29. Rivest R, Falardeau P, DiPaolo T. Brain dopamine transporter: gender differences and effect of chronic haloperidol.Brain Res 1995; 692: 269–272.

    PubMed  Google Scholar 

  30. Lever SZ, Baidoo KE, Mahmood A, Matsumura K, Scheffel UA, Wagner HN Jr. Novel technetium ligands with affinity for the muscarinic cholinergic receptor.Nucl Med Biol 1994; 21: 157–164.

    PubMed  Google Scholar 

  31. Del Rosario RB, Jung Y-W, Baidoo KE, Lever SZ, Wieland DM. Synthesis and in vivo evaluation of a [99m/99Tc]-DADT-benzovesamicol: a potential marker for cholinergic neurons.Nucl Med Biol 1994; 21: 197–203.

    PubMed  Google Scholar 

  32. Chi DY, O'Neil JP, Andernson CJ, Welch MJ, Katzenellenbogen JA. Homodimeric and heterodimeric bis(aminothiol) oxometal complexes with rhenium(V) and technetium(V). Control of heterodimeric complex formation and an approach to metal complexes that mimic steroid hormones.J Med Chem 1994; 37: 928–937.

    PubMed  Google Scholar 

  33. DiZio JP, Anderson CJ, Davison A, Ehrhardt GJ, Carlson KE, Welch MJ, Katzenellenbogen JA. Technetium- and rhenium-labeled progestins: synthesis, receptor binding and in vivo distribution of an 11-ß-substituted progestin labeled with technetium-99 and rhenium-186.J Nucl Med 1992; 33: 558–569.

    PubMed  Google Scholar 

  34. O'Neil JP, Wilson SR, Katzenellenbogen JA. Preparation and structural characterization of monoamine-monoamide bis(thiol) oxo complexes of technetium(V) and rhenium(V).Inorg Chem 1994; 33: 319–323.

    Google Scholar 

  35. Madras BK, Jones AG, Mahmood A, Zimmerman RE, Garada B, Holman BL, Davison A, Blundell P, Meltzer PC. Technepine: a high affinity technetium-99m probe to label the dopamine transporter in brain by SPECT imaging.Synapse 1996; 22: 239–246.

    PubMed  Google Scholar 

  36. Mennicken F, Savasta M, Peretti-Renucci R, Feuerstein C. Autoradiographic localization of dopamine uptake sites in the rat brain with [3H]-GBR 12935.J Neural Transm 1992; 87: 1–14.

    Google Scholar 

  37. Kaufman MJ, Madras BK. Distribution of cocaine recognition sites in monkey brain. II. Ex vivo autoradiography with [3H]CFT and [125I]RTI-55.Synapse 1992; 12: 99–111.

    PubMed  Google Scholar 

  38. Seibyl JP, Laruelle MA, Van Dyck CH, Wallace E, Baldwin RM, Zoghbi SS, Zea-Ponce Y, Neumeyer JL, Charney DS, Hoffer PB, Innis RB. Reproducibility of iodine-123-β-CIT SPECt brain measurement of dopamine transporters.J Nucl Med 1996; 37: 222–228.

    PubMed  Google Scholar 

  39. Meegalla SK, Plössl K, Kung M-P, Stevenson DA, Liable-Sands LM, Rheingold AL, Kung HF. First example of a Tc-99m complex as a dopamine transporter imaging agent.J Am Chem Soc 1994; 117: 11037–11038.

    Google Scholar 

  40. Chugani DC, Ackermann RF, Phelps ME. In vitro [3H]spiperone binding: evidence for accumulation in corpus striatum by agonist-mediated receptor internalization.J Cereb Blood Flow Metab 1988; 8: 291–303.

    PubMed  Google Scholar 

  41. Ebersole BJ, Weinstein H, Maayani S. Differences ind[3H]lysergic acid diethylamide binding in mouse cortex and hippocampus in vivo and in vitro revealed by radioautography and rapid filtration studies. J Pharmacol Exp Ther 1984; 229: 865–871.

    PubMed  Google Scholar 

  42. Kuczenski R, Segal DS, Aizenstein ML. Amphetamine, cocaine and fencafamine: relationship between locomotor and stereotype response profiles and caudate and accumbens dopamine dynamics. J Neurosci 1991; 11: 2703–2712.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kung, MP., Stevenson, D.A., Plössl, K. et al. [99mTc]TRODAT-1: A novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 24, 372–380 (1997). https://doi.org/10.1007/BF00881808

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00881808

Key words

Navigation