Skip to main content
Log in

Rabbit endometrium in organ culture: Morphological evidence for progestational differentiation in vitro

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

This communication describes conditions for long-term organotypic culture of rabbit endometrium allowing progesterone-induced transformation, as typcial for early pregnancy, to continue in vitro. This system appears to compare favorably with in vitro models so far proposed for the study of hormonal control of uterine function or for the investigation of cell-biological aspects of embryo implantation. The specific aim in the presented system is to provide approximate normal epithelium-stroma interrelationships. Fragments of endometrium consisting of epithelium and stroma were obtained during early pseudopregnancy and cultured on a gyratory shaker. Morphology was investigated by light microscopy, transmission and scanning electron microscopy. During the first two days the epithelium grows over the exposed stroma regenerating a complete epithelial lining. No central necrosis is found in the stroma for up to 6 days, and the tissue keeps its organotypic architecture although certain morphological differences can be observed between regenerated versus original epithelium. In the regenerating portion a stage-specific cell differentiation and the reformation of a basal lamina are missing. Progesterone substitution preserves cell morphology and allows to maintain, in vitro, the stage-specific pattern of cell organelles. Most characteristic is the induction of extensive fusion of epithelial cells. These large symplasms are comparable in size and structure to those formed in pregnancy in the implantation chamber in vivo. Only the superficial parts of the original (not the regenerated) epithelium are capable of progesterone-induced large-scale fusion. This organotypical culture system appears to be of potential value for in vitro studies on hormone action and on endometrial receptivity for embryo implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d.p.c. :

dies post coitum

d p. hCG :

days after injection of hCG (dies post injectionem hCG)

FBS :

fetal bovine serum

hCG :

human chorionic gonadotropin

References

  • Beier HM, Mootz U (1979) Significance of maternal uterine proteins in the establishment of pregnancy. In: Maternal Recognition of Pregnancy. Ciba Foundation Series 64, Excerpta Medica, North Holland, Amsterdam and Elsevier, North Holland, Inc, New York, pp 111–140

    Google Scholar 

  • Bigsby RM, Cunha GR (1986) Estrogen stimulation of deoxyribo-nucleic acid synthesis in uterine epithelial cells which lack estrogen receptors. Endocrinology 119:390–396

    Google Scholar 

  • Bissell MJ, Barcellos-Hoff MH (1987) The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci [Suppl] 8:327–343

    Google Scholar 

  • Browning JY, Keyes PL, Wolf RL (1980) Comparison of serum progesterone, 20α-dihydroprogesterone, and estradiol -17β in pregnant and pseudopregnant rabbits: Evidence for post-implantation recognition of pregnancy. Biol Reprod 23:1014–1019

    Google Scholar 

  • Busch LC (1982) Ultrastrukturelle Untersuchungen zur Transformation des Endometriums. Habilitationsschrift, Medizinische Fakultät, RWTH Aachen, FRG

    Google Scholar 

  • Busch LC, Winterhager E, Fischer B (1986) Regeneration of the uterine epithelium in later stages of pseudopregnancy in the rabbit. An ultrastructural study. Anat Embryol 174:97–104

    Google Scholar 

  • Centola GM, Cisar M, Knab DR (1984) Establishment and morphologic characterization of normal human endometrium in vitro. In Vitro 20:451–462

    Google Scholar 

  • Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatani KK (1978) Polarized monolayer formed by epithelial cells on a permeable and translucent support. J Cell Biol 77:853–880

    Google Scholar 

  • Conti CJ, Gimenez-Conti IB, Conner EA, Lehnan JM, Gerschenson LE (1984) Estrogen and progesterone regulation of proliferation, migration, and loss in different target cells of rabbit uterine epithelium. Endocrinology 114:345–351

    Google Scholar 

  • Cunha GR (1985) Mesenchymal-epithelial interactions during androgen-induced development of the prostate. In: Lash JW, Saxén L (eds) Developmental Mechanisms: Normal and Abnormal. Alan R Liss Inc, New York, pp 15–124

    Google Scholar 

  • Davies J, Hoffman LH (1973) Studies on the progestational endometrium of the rabbit. I. Light microscopy, day 0 to day 13 of gonadotrophin-induced pseudopregnancy. Am J Anat 137:423–446

    Google Scholar 

  • Davies J, Hoffman LH (1975) Studies on the progestational endometrium of the rabbit. II. Electron microscopy, day 0 to day 13 of gonadotrophin-induced pseudopregnancy. Am J Anat 142:335–366

    Google Scholar 

  • Davies J, Hoffman LH, Davenport GR (1972) Luteal maintenance in the hypophysectomized pseudopregnant rabbit: effect of ovine luteinizing hormone and follicle-stimulating hormone. J Endocrinol 54:25–38

    Google Scholar 

  • Denker H-W (1970) Topochemie hochmolekularer Kohlenhydrat-substanzen in Frühentwicklung und Implantation des Kaninchens. I. Allgemeine Lokalisierung und Charakterisierung hochmolekularer Kohlenhydratsubstanzen in frühen Embryonalstadien. Zool Jb Physiol 75:141–245

    Google Scholar 

  • Denker H-W (1977) Implantation: The role of proteinases, and blockage of implantation by proteinase inhibitors. Springer, Berlin Heidelberg New York Tokyo, Adv Anat Embryol Cell Biol, Vol 53, Part 5

    Google Scholar 

  • Denker H-W (1983) Basic aspects of ovoimplantation. In: Wynn RM (ed) Obstetrics and Gynecology Annual, Norwalk, Connecticut: Appleton Century Crofts, Vol 12, pp 15–42

    Google Scholar 

  • Denker H-W, Busch LC, Kühnel W (1984) Endometrial organ culture: development of an in-vitro model for embryo implantation. Anat Anz 156:142

    Google Scholar 

  • Duval M (1889/1890) Le placenta des rongeurs. J Anat Physiol (Paris) 25:309–342, 573–627 and 26:1–48, 273–344

    Google Scholar 

  • Friedrich E (1976) Die Wirkung niedrig-dosierter Gestagene auf die hypothalamisch-hypophysär-ovarielle Achse. Habilitationsschrift, Medizinische Fakultät, RWTH Aachen, FRG

    Google Scholar 

  • Garfield RG, Sims SM, Kannan MS, Daniel EE (1978) Possible role of gap junctions in activation of myometrium during parturition. Am J Physiol 235:C168-C179

    Google Scholar 

  • Gerschenson LE, Conner EA, Yang J, Andersson M (1979) Hormonal regulation of proliferation in two populations of rabbit endometrial cells in culture. Life Sci 24:1337–1343

    Google Scholar 

  • Gerschenson LE, Conti LJ, Depaoli JR, Lieberman R, Lynch M, Orlicky D, Rivas-Berrios A (1984) Estrogen and progesterone regulation of proliferation and differentiation of rabbit uterine epithelium. In: Gurpide E, Calandra R, Leva C, Soto RJ (eds) Hormones and cancer, progress in clinical and biological research. Alan R Liss Inc, New York, pp 119–133

    Google Scholar 

  • Glenister RW (1960) Experimental nidation of blastocysts in organ culture. Bull Soc Roy Beige Gynec Obstet 30:635–640

    Google Scholar 

  • Glenister TW (1961a) Organ culture as a new method for studying the implantation of mammalian blastocysts. Proc R Soc Lond [Biol] 154:428–431

    Google Scholar 

  • Glenister TW (1961b) Observations on the behaviour in organ culture of rabbit trophoblast from implanting blastocysts and early placentae. J Anat 95:474–485

    Google Scholar 

  • Glenister TW (1963) Observations on mammalian blastocysts implanting in organ culture. In: Delayed Implantation. Enders AC (ed) Rice University, Semicentennial publications, pp 171–183

  • Glenister TW (1965) The behaviour of trophoblast when blastocysts effect nidation in organ culture. In: The early conceptus, Normal and Abnormal. Papers and Discussions Presented at a Symposium Held at Queens's College, Dundee, 1964. University of St. Andrew, 1965. Park WW (ed) E and S Livingstone Ltd, Edinbourgh and London, pp 24–26

    Google Scholar 

  • Glenister TW (1967) Organ culture and its combination with electron microscopy in the study of nidation processes. In: Fertility and Sterility, Proceedings of the 5th World Congress, 1966, Stockholm. Westin B, Wiqvist N (eds) International Congress Series No 133, Excerpta Medica Foundation, pp 385–394

  • Glenister TW (1970) Ovo-implantation in vitro and its relation to normal implantation. In: Ovo-implantation, Human Gonadotropin and Prolactin. Hubinot PO, Levroy F, Robyn C, Leieus P (eds) S Karger, Basel Munich, New York, pp 73–85

    Google Scholar 

  • Grant PS (1973) The effect of progesterone and oestradiol on blastocysts cultured within the lumina of immature mouse uteri. J Embryol Exp Morphol 29:617–638

    Google Scholar 

  • Hegele-Hartung C, Beier HM (1986) Distribution of uteroglobin in the rabbit endometrium after treatment with an anti-progesterone (ZK 98.734): an immunocytochemical study. Hum Reprod 1:497–505

    Google Scholar 

  • Hoffman LH, Strong GB, Davenport GR, Frölich JC (1977) Deciduogenic effect of prostaglandins in the pseudopregnant rabbit. J Reprod Fertil 50:231–237

    Google Scholar 

  • Hohn H-P, Busch LC, Denker H-W (1984) Endometrium in organ culture: a model host tissue for studies of trophoblast invasion. Eur J Cell Biol 33 [Suppl 5]: 17

    Google Scholar 

  • Hohn H-P, Denker H-W (1985) Attachment and invasion of rabbit blastocysts confronted with endometrium in organ culture. Eur J Cell Biol 36 [Suppl 7]: 28

    Google Scholar 

  • Hohn H-P, Denker H-W (1989) A three-dimensional organ culture model for the study of implantation of rabbit blastocysts in vitro. In: Denker H-W, Aplin JD (eds) Trophoblast Invasion and Endometrial Receptivity: Novel Aspects of the Cell Biology of Embryo Implantation. Trophoblast Res Vol. 4. Plenum Press, New York (in press)

    Google Scholar 

  • Holtzer H (1978) Cell lineages, stem cells and the “quantal” cell cycle concept. In: Lord BI, Potten CS, Cole RF (eds) Stem Cells and Tissue Homeostasis; Br Soc J Cell Biol Symp Cambridge New York London Melbourne: Cambridge University Press, pp 1–27

    Google Scholar 

  • Kennedy TG (1983) Embyronic signals and the initiation of blastocyst implantation. Aust J Biol Sci 36:531–544

    Google Scholar 

  • Korach KS, Lamb JC IV (1981) Estrogen action in the mouse uterus: differential nuclear localization of estradiol in uterine cell types. Endocrinology 108:1989–1991

    Google Scholar 

  • Kratochwil K (1972) Tissue interaction during embryonic development: general properties. In: Tarin D (ed) Tissue interactions in carcinogenesis. Academic Press, London New York, pp 1–47

    Google Scholar 

  • Kratochwil K, Schwartz P (1976) Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue of testosterone. Proc Natl Acad Sci USA 73:4041–4044

    Google Scholar 

  • Kratochwil K, Durnberger H, Heuberger B, Wasner G (1979) Hormone-induced cell and tissue interaction in the embryonic mammary gland. Cold Spring Harbour Conference on cell proliferation 6:717–726

    Google Scholar 

  • Kutas M, Chung A, Bartos D, Castro A (1972) A simple progesterone radioimmunoassay without column chromatography. Steroids. 20:697–716

    Google Scholar 

  • Lescoat D (1985) Effect of proteinase inhibitors on rabbit uterine ultrastructure. Acta Anat (Basel) 121:17–20

    Google Scholar 

  • Lytton FDC, Poyser NL (1982) Concentration of PGF-2 and PGE-2 in the uterine venous blood of rabbits. J Reprod Fertil 64:421–427

    Google Scholar 

  • Mareel M, Kint J, Meyvisch C (1979) Methods of study of the invasion of malignant C3H-mouse fibroblasts into embryonic chick heart in vitro. Virchows Arch [B] 30:95–111

    Google Scholar 

  • Maximow A (1900) Die ersten Entwicklungsstadien der Kaninchenplazenta. Arch Mikrosk Anat Berlin 56:699–738

    Google Scholar 

  • Minuth WW, Gilbert P, Lauer G, Aktories K, Gross P (1986) Differentiation properties of renal collecting duct cells in culture. Differentiation 33:156–167

    Google Scholar 

  • Mulholland H, Winterhager E, Beier HM (1988) Changes in proteins synthesized by rabbit endometrial epithelial cells following primary culture. Cell Tissue Res 252:123–132

    Google Scholar 

  • Murai JT, Conti CG, Gimenez-Conti I, Orlicky D, Gerschenson LE (1981) Temporal relationship between rabbit uterine epithelium proliferation and uteroglobin production. Biol Reprod 24:649–653

    Google Scholar 

  • Neumann F, Kramer M, Raspé G (1968) Das endokrinologische Wirkungsspektrum von 19-Nor-17α-hydroxy-progesterone-capronat (Gestonoroncapronat). Arzneimittelforschung 189:1289–1297

    Google Scholar 

  • Perrot-Applanat M, Logeat F, Groyer-Picard MT, Milgrom E (1985) Immunocytochemical study of mammalian progesterone receptor using monoclonal antibodies. Endocrinology 116:1473–1484

    Google Scholar 

  • Perrot-Applanat M, Groyer-Picard MT, Logeat F, Milgrom E (1986) Ultrastructural localization of the progesterone receptor by an immunogold method: Effect of hormone administration. J Cell Biol 102:1191–1199

    Google Scholar 

  • Psychoyos A, Casimiri V (1980) Factors involved in uterine receptivity and refractoriness. Prog Reprod Biol 7:143–157

    Google Scholar 

  • Rajkumar K, Bigsby R, Lieberman R, Gerschenson LE (1983a) Uteroglobin production by cultured rabbit uterine epithelial cells. Endocrinology 112:1490–1498

    Google Scholar 

  • Rajkumar K, Bigsby R, Lieberman R, Gerschenson LE (1983b) Effect of progesterone and 17β-estradiol on the production of uteroglobin by cultured rabbit uterine epithelial cells. Endocrinology 112:1499–1505

    Google Scholar 

  • Richards J, Hamamoto S, Smith S, Pasco D, Guzman R, Nandi S (1983) Response of end bud cells from immature rat mammary gland to hormones when cultured in collagen gel. Exp Cell Res 147:95–109

    Google Scholar 

  • Ricketts AP, Hagensee M, Bullock DW (1983) Characterization in primary monolayer culture of separated cell types from rabbit endometrium. J Reprod Fertil 67:151–160

    Google Scholar 

  • Rodriguez-Boulan E, Sabatini DD (1978) Asymmetric budding of viruses in epithelial monolayers: a model system for study of epithelial polarity. Proc Natl Acd Sci USA 75:5071–5075

    Google Scholar 

  • Rodriguez-Boulan E, Paskiet KT, Sabatini DD (1983) Assembly of enveloped viruses in madin-darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J Cell Biol 96:866–874

    Google Scholar 

  • Scheunert A, Trautmann A (1976) Lehrbuch der Veterinär-Physiologie, 6. Auflage. Paul Parey, Berlin Hamburg

    Google Scholar 

  • Schoenfeld H (1903) Contribution à l'étude de la fixation de l'oeuf des mammifères dans la cavité utérine, et des premiers stades de la placentation. Arch Biol 19:701–830

    Google Scholar 

  • Simons K, Fuller SD (1985) Cell surface polarity in epithelia. Annu Rev Cell Biol 1:243–288

    Google Scholar 

  • Trujano M, Wrathall AE (1985) Observations on the survival in vitro of cultured explants of porcine endometrium. Br Vet J 141:372–377

    Google Scholar 

  • Vakaet L, Vandekerkhove D, Mareel M (1971) Association de cellules HeLa avec de l'épithélium tubaire humain adulte. CR Soc Biol 165:2225–2226

    Google Scholar 

  • Winterhager E, Kühnel W (1982) Alterations in intercellular junctions of the uterine epithelium during the preimplantation phase in the rabbit. Cell Tissue Res 224:517–526

    Google Scholar 

  • Winterhager E, Brümmer F, Dermietzel R, Hülser DF, Denker H-W (1988) Gap junction formation in rabbit uterine epithelium in response to embryo recognition. Dev Biol 126:203–211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohn, H.P., Winterhager, E., Busch, L.C. et al. Rabbit endometrium in organ culture: Morphological evidence for progestational differentiation in vitro. Cell Tissue Res. 257, 505–518 (1989). https://doi.org/10.1007/BF00221460

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00221460

Key words

Navigation