Skip to main content
Log in

Guidance, Navigation and Control for Satellite Proximity Operations using Tschauner-Hempel Equations

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

In this paper, the development of relative navigation, guidance, and control algorithms of an autonomous space rendezvous and docking system are presented. These algorithms are based on using the analytical closed-form solution of the Tschauner-Hempel equations that is completely explicit in time. The navigation system uses an extended Kalman filter based on Tschauner-Hempel equations to estimate the relative position and velocity of the chaser vehicle with respect to the target vehicle and the chaser attitude and gyros biases. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system along with the star tracker and gyro measurements of the chaser. The corresponding measurement models, process noise matrix and other filter parameters are provided. The guidance and control algorithms are based on the glideslope used in the past for rendezvous and proximity operations of the Space Shuttle with other vehicles. These algorithms are used to approach, flyaround, and to depart form a target vehicle in elliptic orbits. The algorithms are general and able to translate the chaser vehicle in any direction, decelerate while approaching the target vehicle, and accelerate when moving away. Numerical nonlinear simulations that illustrate the relative navigation, attitude estimation, guidance, and control algorithms performance and accuracy are evaluated in the current paper. The analyses include the navigations errors, trajectory dispersions and attitude dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fehse, W.: Automated Rendezvous and Docking of Spacecraft, 1st ed. Cambridge University Press, United Kingdom (2003)

    Book  Google Scholar 

  2. Woffinden, D.C., Geller, D.K.: Navigating the road to autonomous orbital rendezvous. J. Spacecr. Rocket. 44(4), 898–909 (2007)

    Article  Google Scholar 

  3. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Astronaut. Sci. 27(9), 653–678 (1960)

    MATH  Google Scholar 

  4. Tschauner, J., Hempel, P.: Rendezvous zu einem in Elliptischer Bahn Umlaufenden Ziel. Acta Astronautica 11, 104–109 (1965)

    MATH  Google Scholar 

  5. Yamanaka, K., Ankersen, F.: New state transition matrix for relative motion on an arbitrary elliptical orbit. J. Guid. Control. Dyn. 25(1), 60–66 (2002)

    Article  Google Scholar 

  6. Carter, T.E.: State transition matrices for terminal rendezvous studies: brief survey and new example. J. Guid. Control. Dyn. 21(1), 148–155 (1998)

    Article  MATH  Google Scholar 

  7. Melton, R.G.: Time-explicit representation of relative motion between elliptical orbits. J. Guid. Control. Dyn. 23(4), 604–610 (2000)

    Article  Google Scholar 

  8. Broucke, R.A.: Solution of the elliptic rendezvous problem with the time as independent variable. J. Guid. Control. Dyn. 26(4), 615–621 (2003)

    Article  Google Scholar 

  9. Inalhan, G., Tillerson, M., How, J.P.: Relative dynamics and control of spacecraft formation in eccentric orbits. J. Guid. Control. Dyn. 25(1), 48–58 (2002)

    Article  Google Scholar 

  10. Sengupta, P., Vadali, S.R.: Relative motion and the geometry of formations in keplerian elliptic orbits. J. Guid. Control. Dyn. 30(4), 953–964 (2007)

    Article  Google Scholar 

  11. Cho, H.C., Park, S.Y.: Analytical solution for fuel optimal reconfiguration in relative motion. J. Optim. Theory Appl. 141(3), 495–512 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Woffinden, D.C., Geller, D.K.: Relative angles-only navigation and pose estimation for autonomous orbital rendezvous. J. Guid. Control. Dyn. 30(5), 1455–1469 (2007)

    Article  Google Scholar 

  13. Jenkins, S.C., Geller, D.K.: State Estimation and Targeting For Autonomous Rendezvous and Proximity Operations, AAS 07-316, Proceedings of the AIAA/AAS Astrodynamics Specialists Conference, Mackinac Island, MI (2007)

  14. Junkins, J.L., Kim, S., Crassidis, L., Cheng, Y., Fosbury, A.M.: Kalman Filtering for Relative Spacecraft Attitude and Position Estimation, AIAA, 2005-6087, Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Francisco, California (2005)

  15. Woffinden, D.C.: On-Orbit Satellite Inspection Navigation and Δv Analysis, M.S. Thesis, Aeronautics and Astronautics. Dept. Massachusetts Institute of Technology, Cambridge (2004)

    Google Scholar 

  16. Vallado, D.A., 2nd ed.: Fundamentals of Astrodynamics and Applications. Microcosm Press, El Segundo, California (2001)

    Google Scholar 

  17. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, American Institute of Aeronautics and Astronautics. Reston, Virginia (2003)

    Book  Google Scholar 

  18. Pittelkau, M.E.: Rotation vector in attitude estimation. J. Guid. Control. Dyn. 26(6), 855–860 (2003)

    Article  Google Scholar 

  19. Lear, W.M.: Kalman Filtering Techniques, NASA Johnson Space Center: Mission Planning and Analysis Division, Houston, TX. JSC-20688 (1985)

  20. De Vries, J.P.: Elliptic elements in terms of small increments of position and velocity components. AIAA J. 1(11), 2626–2629 (1963)

    Article  Google Scholar 

  21. Carter, T.E., Humi, M.: Fuel-optimal rendezvous near a point in general keplerian orbit. J. Guid. Control. Dyn. 10(6), 567–573 (1987)

    Article  MATH  Google Scholar 

  22. Carter, T.E.: New form for the optimal rendezvous equations near a keplerian orbit. J. Guid. Control. Dyn. 13(1), 183–186 (1990)

    Article  MATH  Google Scholar 

  23. Hablani, H.B., Tapper, M.L., Dana-Bashian, D.J.: Guidance and Relative Navigation for Autonomous Rendezvous in a Circular Orbit. J. Guid. Control. Dyn. 25(3), 553–562 (2002)

    Article  Google Scholar 

  24. Okasha, M., Newman, B.: Relative Motion and Autonomous Rendezvous in Keplerian Elliptic Orbits, AIAA 2010-7593, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada (2010)

  25. Okasha, M., Newman, B.: Relative Motion Navigation and Guidance in a Perturbed Orbit, Proceedings of the AAS/AIAA Space Flight Meeting, New Orleans, Louisiana (2011)

  26. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic System, 1st ed. CRC Press LLC, U.S. (2004)

    Book  Google Scholar 

  27. Zanetti, R., Majji, M., Bishop, R.H., Mortari, D.: Norm-constrained kalman filtering. J. Guid. Control. Dyn. 32(5), 1458–1465 (2009)

    Article  Google Scholar 

  28. Brown, R.G., Hawag, P., 3rd ed: Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Son Inc., United States (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Okasha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okasha, M., Newman, B. Guidance, Navigation and Control for Satellite Proximity Operations using Tschauner-Hempel Equations. J of Astronaut Sci 60, 109–136 (2013). https://doi.org/10.1007/s40295-014-0024-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-014-0024-y

Keywords

Navigation