, Volume 28, Issue 3, pp 209-221
Date: 11 Jul 2012

Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav 1.3

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access



In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Nav1.3 expressed in Xenopus oocytes.


Two-electrode voltage clamp was used to record the whole-cell sodium current.


The peak currents of Nav1.3 were depressed by BmK AS over a wide range of concentrations (10, 100, and 500 nmol/L). Most remarkably, BmK AS at 100 nmol/L hyperpolarized the voltage-dependence and increased the voltage-sensitivity of steady-state activation/inactivation. In addition, BmK AS was capable of hyperpolarizing not only the fast inactivation but also the slow inactivation, with a greater preference for the latter. Moreover, BmK AS accelerated the time constant and increased the ratio of recovery in Nav1.3 at all concentrations.


This study provides direct evidence that BmK AS facilitates steady-state activation and inhibits slow inactivation by stabilizing both the closed and open states of the Nav1.3 channel, which might result from an integrative binding to two receptor sites on the voltage-gated sodium channels. These results may shed light on therapeutics against Nav1.3-targeted pathology.