Skip to main content

Advertisement

Log in

Evidence in medulloblastomas

  • Educational Series
  • Multidisciplinary Approach to Cancer Treatment
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Medulloblastoma is the most common infratentorial malignant tumour under 15 years of age. In recent protocols, the patients are stratified for treatment in standard risk or high risk, according to the clinical variables as age, localized or disseminated disease, degree of surgical resection and more recently expected biological behaviour based on retrospective and prospective studies of former samples analyzed. The objectives for future treatments are reduce morbidity without jeopardizing survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Giangaspero F, Eberhart CG, Haapasalo et al (2007) In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system, 4th edn. IARC, Lyon, Medulloblastoma pp 132–140

    Google Scholar 

  2. McNeil DE, Cote TR, Ciegg L et al (2002) Incidence and trends in pediatric malignancies, medulloblastoma/primitive neuroectodermal tumor: a SEER update, Surveillance Epidemiology and End Results. Med Pediatr Oncol 39:190–194

    Article  PubMed  Google Scholar 

  3. Peris Bonet R, Martinez-García C, Lacour B, Petrovich S, Giner Ripoll B, Navajas A, Steliarova-Foucher E (2006). Childhood central nervous system tumours, incidence and survival in Europe (1978–1997). Report from Automated Childhood Cancer Information System Project. Eur J Cancer 42:2064–2080

    Article  PubMed  Google Scholar 

  4. García Z, Echebarría A, Urberuaga A, Astigarraga I, Burgos J, Navajas A (2009) Differential aspects in children and adult patients with medulloblastoma. Med Clin (Barc) 133:454–459

    Article  Google Scholar 

  5. Pfister S, Remke M, Toedt G et al (2007) Supratentorial primitive neuroectodermal tumors of the central nervous system frequently harbor deletions of the CDKN2A locus and other genomic aberrations distinct from medulloblastomas. Genes Chromosomes Cancer 46:839–851

    Article  CAS  PubMed  Google Scholar 

  6. Navajas A, Fernández Teijeiro A (2005) Embryonic tumours of the central nervous System. Clin Transl Oncol 7:219–227

    Article  Google Scholar 

  7. Urberuaga A, Navajas A, Burgos J, Pijoán JI (2006) A review of clinical and histological features of Spanish paediatric medulloblastomas during the last 21 years. Childs Nerv Sys 22:466–474

    Article  Google Scholar 

  8. Peet AC, Leach MO, Pinkerton CR et al (2005) Proceedings of the Engineering and Physical Sciences Research Council Workshop. The development of functional imaging in the diagnosis, management and understanding of childhood brain tumours. Pediatr Blood Cancer 44:103–113

    CAS  Google Scholar 

  9. Chang CH, Housepian EM, Herbert C Jr. (1969) An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology 93:1351–1359

    CAS  PubMed  Google Scholar 

  10. Grotzer MA, Janss AJ, Fung K et al (2000) TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 18:1027–1035

    CAS  PubMed  Google Scholar 

  11. Ellison DW, Clifford SC, Gajjar A et al (2003) Recent advances in medulloblastoma. Eur J Ped Neurol 7:53–66

    Article  Google Scholar 

  12. Gajjar A, Herman R, Kocak M et al (2004) Clinical, histopathologic and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J Clin Oncol 22:984–993

    Article  CAS  PubMed  Google Scholar 

  13. Fernández-Teijeiro A, Betensky RA, Sturla LM et al (2004) Combining gene expresión profiles and clinical parameters for risk stratification in medulloblastomas. J Clin Oncol 22:994–998

    Article  PubMed  Google Scholar 

  14. Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5:209–218

    Article  PubMed  Google Scholar 

  15. Cvekl A Jr, Zavadil J, Birshtein BK et al (2004) Analysis of transcripts from 17p13.3 in medulloblastoma suggests ROX/MNT as a potential tumour suppressor gene. Eur J Cancer 40:2525–2532

    Article  CAS  PubMed  Google Scholar 

  16. Pizer BL, Clifford SC (2009) The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg 23:364–375

    Article  PubMed  Google Scholar 

  17. Pfister S, Remke M, Benner A et al (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27:1627–1636

    Article  PubMed  Google Scholar 

  18. Duffner PK, Horowitz ME, Krischer JP et al (1993) Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumours. N Engl J Med 328:1725–1731

    Article  CAS  PubMed  Google Scholar 

  19. Rood BR, Mac Donald TJ, Packer RJ (2004) Current treatment of medulloblastoma: recent advances and future challenges. Semin Oncol 31:666–675

    Article  PubMed  Google Scholar 

  20. Grill J, Sainte-Rose C, Jouvet A et al (2005) Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 6:573–580.

    Article  CAS  PubMed  Google Scholar 

  21. Rutowski S, Bode U, Deinlein F et al (2005) Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 352:978–986

    Article  Google Scholar 

  22. Johnston DL, Keene D, Bartels U et al (2009) Medulloblastoma in children under the age of three years: a retrospective Canadian review. J Neuro Oncol 94:51–56

    Article  Google Scholar 

  23. Von Hoff K, Hinkes B, Gerber Nu et al (2009) Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomized multicentre trial HIT91. Eur J Cancer 45:1209–1217

    Article  Google Scholar 

  24. Von Hoff K, Hartmann W, von Bueren AO et al (2010) Large cell/anaplastic medulloblastoma: outcome according to Myc status, histopathological, and clinical risk factors. Pediatr Blood Cancer 54:369–376

    Article  Google Scholar 

  25. Bathia R, Tahir M, Chandler CL (2009) The management of hydrocephalus in children with posterior fossa tumours: the role of pre-resectional endoscopic third ventriculostomy. Pediatr Neurosurg 45:186–191

    Article  Google Scholar 

  26. Kombogiorgas D, Natarajan K, Sgouros S (2008) Predictive value of preoperative ventricular volume on the need for permanent hydrocephalus treatment immediately after resection of posterior fossa medulloblastomas in children. J Neurosurg Pediatr 1:451–455

    Article  PubMed  Google Scholar 

  27. Souweidane MM, Morgenstern PF, Cristos PJ et al (2009) Intraoperative arachnoid and cerebrospinal fluid sampling in children with posterior fossa brain tumours. Neurosurgery 65:72–78

    Article  PubMed  Google Scholar 

  28. Tait DM, Thornton-Jones H, Bloom HJ et al (1990) Adjuvant chemotherapy for medulloblastoma: the first multicentre controlled trial of the International Society of Paediatric Oncology (SIOP) Eur J Cancer 26:464–469

    CAS  PubMed  Google Scholar 

  29. Zeltzer PM, Boyett JM, Finlay JL et al (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastomas in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 17:832–845

    CAS  PubMed  Google Scholar 

  30. Kortmann RD, Kuhl J, Timmerman B et al (2000) Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT 91. Int J Radiat Oncol Biol Phys 46:269–279

    Article  CAS  PubMed  Google Scholar 

  31. Taylor RE, Bailey CC, Robinson K et al (2003) Results of a randomised study of pre-radiotherapy chemotherapy vs radiotherapy alone for non-metastatic (M0-1) medulloblastoma. The SIOP/UKCCSG PNET-3 study. J Clin Oncol 21:1581–1591

    Article  CAS  PubMed  Google Scholar 

  32. Palmer SL, Goloubeva O, Reddick WE et al (2001) Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. J Clin Oncol 19: 2302–2308

    CAS  PubMed  Google Scholar 

  33. Mulhern RK, Palmer SL, Merchant TE et al (2005) Neurocognitive consequences of riskadapted therapy for childhood medulloblastoma: attention and memory functioning among pediatric patients with medulloblastoma. J Clin Oncol 23:5511–5519

    Article  PubMed  Google Scholar 

  34. Spoudeas HA, Charmandari E, Brook CG (2003) Hypothalamo-pituitary-adrenal axis integrity after cranial irradiation for childhood posterior fossa tumours. Med Pediatr Oncol 40:224–229

    Article  CAS  PubMed  Google Scholar 

  35. Thomas PRM, Deutsch M, Kepner J et al (2000) Low-stage medulloblastoma: final analysis of trial comparing standard-dose with reduceddose neuraxis irradiation. J Clin Oncol 18: 3004–3011

    CAS  PubMed  Google Scholar 

  36. Packer RJ, Goldwein J, Nicholson HS et al (1999) Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: A Children’s Cancer Group Study. J Clin Oncol 17: 2127–2136

    CAS  PubMed  Google Scholar 

  37. Packer RJ, Gajjar A, Vezina G et al (2006) Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastomas. J Clin Oncol 24:4202–4208

    Article  CAS  PubMed  Google Scholar 

  38. del Charco JO, Bolek TW, McCollough WM et al (1998) Medulloblastoma: time-dose relationship based on a 30-year review. Int J Radiat Oncol Biol Phys 42:147–154

    PubMed  Google Scholar 

  39. Gandola L, Massimino M, Cefalo G et al (2009) Hyperfractionated accelerated radiotherapy in the Milan Strategy for Metastatic Medulloblastoma. J Clin Oncol 27:566–571

    Article  CAS  PubMed  Google Scholar 

  40. Taylor RE, Boota N, Bujkiewicz S et al (2009) Children’s Cancer and Leukemia Group (CCLG) Study of Hyperfractionated Accelerated Radiotherapy (HART) with Chemotherapy for M1-3 Medulloblastoma (MB). Int J Radiat Oncol Biol Phys 275:Supp S38

    Google Scholar 

  41. Ater J (2007) In: Pinkerton R, Shankar AG, Matthay K (eds) Evidence-based pediatric oncology, 2nd edn, Blackwell, Oxford, Medulloblastoma pp 125–149

    Google Scholar 

  42. Merchant TE, Kun LE, Krasin MJ et al (2008) Multiinstitutional prospective trial of reduceddose craniospinal irradiation (23.4 Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8Gy) and dose intensive chemotherapy for average risk medulloblastoma. Int J Radiat Oncol Biol Phys 70:782–787

    PubMed  Google Scholar 

  43. Dunkel IJ, Gardner SL, Garvin JH et al (2010) High dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. Neuro Oncol 12:297–303

    PubMed  Google Scholar 

  44. Gajjar A, Chintagumpala M, Ashley D et al Riskadapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St. Jude Medulloblastoma-96): Long-term results from a prospective multicentre trial. Lancet Oncol 7:813–820

  45. Taylor R, Bailey CC, Robinson KJ et al (2004) Impact of radiotherapy parameters on outcome in the International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 study of preradiotherapy chemotherapy for M0-M1 medulloblastoma. Int J Radiat Oncol Biol Phys 58:1148–1193

    Article  Google Scholar 

  46. St Clair WH, Adams JA, Bues M et al (2004) Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int J Radiat Oncol Biol Phys 58:727–734

    CAS  PubMed  Google Scholar 

  47. Carrie C, Grill J, Figarella-Branger D et al On line quality control, hyperfractionated radiotherapy alone and reduced boost volume for standard risk medulloblastoma: long-term results of MSFOP 98. J Clin Oncol 27:1879–1883

  48. Lannering B, Rurkowski S, Gustafsson G et al (2008) HIT-SIOP PNET-IV: A randomized multicenter study of hyperfractionated versus conventional radiotherapy in children with standard-risk medulloblastoma. Neuro Oncol 10:480

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Navajas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navajas, A., Giralt, J. Evidence in medulloblastomas. Clin Transl Oncol 12, 271–277 (2010). https://doi.org/10.1007/s12094-010-0503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0503-y

Keywords

Navigation