Skip to main content

Advertisement

Log in

Probiotics promote rapid-turnover protein production by restoring gut flora in patients with alcoholic liver cirrhosis

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background and aims

Accumulating evidence suggests that deterioration of the gut flora contributes to the pathogenesis of alcoholic liver cirrhosis (ALC). However, the ALC flora profile and its response to probiotic treatment have not been fully examined. This double-blind placebo-controlled study aimed to evaluate whether the probiotic beverage Yakult 400 (Y400), which contains Lactobacillus casei strain Shirota, improves liver function in ALC patients, and to analyze the precise gut flora profile by real-time quantitative PCR (qPCR).

Methods

A total of 37 hospitalized ALC patients were randomly allocated to Y400 (n = 18) and placebo (n = 19) groups. Y400 or placebo was served twice a day during the first half of the four-week study. Serum concentrations of rapid-turnover proteins (i.e., transthyretin and transferrin), hypersensitive C-reactive protein, and interleukin-6 were measured weekly. qPCR analysis of fecal bacteria was performed biweekly; stocked fecal samples from 46 healthy subjects were used as references.

Results

Serum transthyretin levels significantly increased in the Y400 group in week 3; similar—although statistically insignificant—increases were seen for transferrin and albumin. Levels of hypersensitive C-reactive protein, but not interleukin-6, significantly decreased in week 4. Before treatment, populations of obligate anerobic bacteria were significantly smaller and those of Enterobacteriaceae were larger in patients than in healthy subjects examined in a previous study. Y400 corrected this imbalance.

Conclusions

This is the first report describing the unique gut flora of ALC patients. Y400 treatment normalized the gut flora and improved liver function. These promising findings warrant further investigation in larger, multicenter studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jaeschke H, Gores GJ, Cederbaum AI, et al. Mechanisms of hepatotoxicity. Toxicol Sci. 2002;65:166–176

    Article  CAS  Google Scholar 

  2. Arteel GE. Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology. 2003;124:778–790

    Article  CAS  Google Scholar 

  3. Enomoto N, Ikejima K, Bradford B, et al. Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin. Gastroenterology. 1998;115:443–451

    Article  CAS  Google Scholar 

  4. Bautista AP. Neutrophilic infiltration in alcoholic hepatitis. Alcohol. 2002;27:17–21

    Article  CAS  Google Scholar 

  5. Saleh M, Elson CO. Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity. 2011;34:293–302

    Article  CAS  Google Scholar 

  6. Rockey DC. Hepatic fibrosis, stellate cells, and portal hypertension. Clin Liver Dis. 2006;10:459–479

    Article  Google Scholar 

  7. Sakisaka S, Koga H, Sasatomi K, Mimura Y, Kawaguchi T, Tanikawa K. Biliary secretion of endotoxin and pathogenesis of primary biliary cirrhosis. Yale J Biol Med. 1997;70:403–408

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma TY, Nguyen D, Bui V, Nguyen H, Hoa N. Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol. 1999;276:G965–G974

    CAS  PubMed  Google Scholar 

  9. Cesaro C, Tiso A, Del Prete A, et al. Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis. 2011;43:431–438

    Article  Google Scholar 

  10. Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology. 1995;108:218–224

    Article  CAS  Google Scholar 

  11. Liu Q, Duan ZP, Ha DK, et al. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology. 2004;39:1441–1449

    Article  Google Scholar 

  12. Stadlbauer V, Mookerjee RP, Hodges S, et al. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J Hepatol. 2008;48:945–951

    Article  CAS  Google Scholar 

  13. Rayes N, Seehofer D, Hansen S, et al. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation. 2002;74:123–127

    Article  Google Scholar 

  14. Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol. 2004;70:7220–7228

    Article  CAS  Google Scholar 

  15. Matsuki T. Development of quantitative PCR detection method with 16S rRNA gene-targeted genus- and species-specific primers for the analysis of human intestinal microflora and its application. Nihon Saikingaku Zasshi. 2007;62:255–261

    Article  CAS  Google Scholar 

  16. Tana C, Umesaki Y, Imaoka A, et al. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil. 2010;22:512–519

    CAS  PubMed  Google Scholar 

  17. Kurakawa T, Kubota H, Tsuji H, et al. Development of a sensitive rRNA-targeted reverse transcription-quantitative polymerase chain reaction for detection of Vibrio cholerae/mimicus, V. parahaemolyticus/alginolyticus and Campylobacter jejuni/coli. Microbiol Immunol. 2012;56:10–20

  18. Morishita T, Fukada T, Shirota M, Yura T. Genetic basis of nutritional requirements in Lactobacillus casei. J Bacteriol. 1974;120:1078–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nanno M, Kato I, Kobayashi T, Shida K. Biological effects of probiotics: what impact does Lactobacillus casei Shirota have on us? Int J Immunopathol Pharmacol. 2011;24(Suppl 1):45S–50S

    CAS  PubMed  Google Scholar 

  20. Nagata S, Asahara T, Ohta T, et al. Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged. Br J Nutr. 2011;106:549–556

    Article  CAS  Google Scholar 

  21. Tuohy KM, Pinart-Gilberga M, Jones M, et al. Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora. J Appl Microbiol. 2007;102:1026–1032

    CAS  PubMed  Google Scholar 

  22. Matsumoto S, Hara T, Hori T, et al. Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol. 2005;140:417–426

    Article  CAS  Google Scholar 

  23. Matsumoto S, Hara T, Nagaoka M, et al. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology. 2009;128:e170–e180

    Article  CAS  Google Scholar 

  24. Mookerjee RP, Stadlbauer V, Lidder S, et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology. 2007;46:831–840

    Article  CAS  Google Scholar 

  25. Fujimoto J, Matsuki T, Sasamoto M, Tomii Y, Watanabe K. Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. Int J Food Microbiol. 2008;126:210–215

    Article  CAS  Google Scholar 

  26. Matsumoto K, Takada T, Shimizu K, et al. The effects of a probiotic milk product containing Lactobacillus casei strain Shirota on the defecation frequency and the intestinal microflora of sub-optimal health state volunteers: a randomized placebo-controlled cross-over study. Biosci Microflora. 2006;25:39–48

    Article  Google Scholar 

  27. Matsuda K, Tsuji H, Asahara T, et al. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol. 2009;75:1961–1969

    Article  CAS  Google Scholar 

  28. Caregaro L, Alberino F, Amodio P, et al. Malnutrition in alcoholic and virus-related cirrhosis. Am J Clin Nutr. 1996;63:602–609

    Article  CAS  Google Scholar 

  29. Chang WT, Ker CG, Hung HC, et al. Albumin and prealbumin may predict retinol status in patients with liver cirrhosis. Hepatogastroenterology. 2008;55:1681–1685

    CAS  PubMed  Google Scholar 

  30. Goodman DS. Retinol-binding protein, prealbumin, and vitamin A transport. Prog Clin Biol Res. 1976;5:313–330

    CAS  PubMed  Google Scholar 

  31. Yamamoto Y, Yoshizawa T, Kamio S, et al. Interactions of transthyretin (TTR) and retinol-binding protein (RBP) in the uptake of retinol by primary rat hepatocytes. Exp Cell Res. 1997;234:373–378

    Article  CAS  Google Scholar 

  32. Monaco HL. The transthyretin–retinol-binding protein complex. Biochim Biophys Acta. 2000;1482:65–72

    Article  CAS  Google Scholar 

  33. Hendriks HF, Verhoofstad WA, Brouwer A, de Leeuw AM, Knook DL. Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp Cell Res. 1985;160:138–149

    Article  CAS  Google Scholar 

  34. Blomhoff R, Berg T, Norum KR. Distribution of retinol in rat liver cells: effects of age, sex and nutritional status. Br J Nutr. 1988;60:233–239

    Article  CAS  Google Scholar 

  35. Vogel S, Piantedosi R, Frank J, et al. An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J Lipid Res. 2000;41:882–893

    CAS  PubMed  Google Scholar 

  36. Vicente CP, Fortuna VA, Margis R, Trugo L, Borojevic R. Retinol uptake and metabolism, and cellular retinol binding protein expression in an in vitro model of hepatic stellate cells. Mol Cell Biochem. 1998;187:11–21

    Article  CAS  Google Scholar 

  37. Nishikawa T, Hagihara K, Serada S, et al. Transcriptional complex formation of c-Fos, STAT3, and hepatocyte NF-1 alpha is essential for cytokine-driven C-reactive protein gene expression. J Immunol. 2008;180:3492–3501

    Article  CAS  Google Scholar 

  38. Horiguchi N, Wang L, Mukhopadhyay P, et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology. 2008;134:1148–1158

    Article  CAS  Google Scholar 

  39. Nemeth E, Valore EV, Territo M, et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101:2461–2463

    Article  CAS  Google Scholar 

  40. Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108:3204–3209

    Article  CAS  Google Scholar 

  41. Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol B. 1987;86:439–472

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the nursing staff for collecting blood and fecal samples.

Conflict of interest

The authors have no potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Koga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, H., Tamiya, Y., Mitsuyama, K. et al. Probiotics promote rapid-turnover protein production by restoring gut flora in patients with alcoholic liver cirrhosis. Hepatol Int 7, 767–774 (2013). https://doi.org/10.1007/s12072-012-9408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-012-9408-x

Keywords

Navigation