Skip to main content
Log in

Lithium Reversibly Inhibits Schwann Cell Proliferation and Differentiation Without Inducing Myelin Loss

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study was undertaken to examine the bioactivity, specificity, and reversibility of lithium’s action on the growth, survival, proliferation, and differentiation of cultured Schwann cells (SCs). In isolated SCs, lithium promoted a state of cell cycle arrest that featured extensive cell enlargement and c-Jun downregulation in the absence of increased expression of myelin-associated markers. In addition, lithium effectively prevented mitogen-induced S-phase entry without impairing cell viability. When lithium was administered together with differentiating concentrations of cyclic adenosine monophosphate (cAMP) analogs, a dramatic inhibition of the expression of the master regulator of myelination Krox-20 was observed. Likewise, lithium antagonized the cAMP-dependent expression of various myelin markers such as protein zero, periaxin, and galactocerebroside and allowed SCs to maintain high levels of expression of immature SC markers even in the presence of high levels of cAMP and low levels of c-Jun. Most importantly, the inhibitory action of lithium on SC proliferation and differentiation was shown to be dose dependent, specific, and reversible upon removal of lithium compounds. In SC-neuron cultures, lithium suppressed myelin sheath formation while preserving axonal integrity, SC-axon contact, and basal lamina formation. Lithium was unique in its ability to prevent the onset of myelination without promoting myelin degradation or SC dedifferentiation. To conclude, our results underscored an unexpected antagonistic action of lithium on SC mitogenesis and myelin gene expression. We suggest that lithium represents an attractive pharmacological agent to safely and reversibly suppress the onset of SC proliferation, differentiation, and myelination while maintaining the integrity of pre-existing myelinated fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jope R (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24(9):441–443

    Article  CAS  PubMed  Google Scholar 

  2. Kim JS, Chang MY, Yu IT, Kim JH, Lee SH, Lee YS, Son H (2004) Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 89(2):324–336. doi:10.1046/j.1471-4159.2004.02329.x

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Z, Yin J, Guan J, Hu B, Niu X, Jin D, Wang Y, Zhang C (2014) Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3beta-dependent beta-catenin/Wnt pathway activation. FEBS J 281(23):5371–5389. doi:10.1111/febs.13081

    Article  CAS  PubMed  Google Scholar 

  4. Su H, Chu TH, Wu W (2007) Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp Neurol 206(2):296–307. doi:10.1016/j.expneurol.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  5. Arioka M, Takahashi-Yanaga F, Sasaki M, Yoshihara T, Morimoto S, Hirata M, Mori Y, Sasaguri T (2014) Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. Biochem Pharmacol 90(4):397–405. doi:10.1016/j.bcp.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  6. Salzer JL (2015) Schwann cell myelination. Cold Spring Harb Perspect Biol 7(8):a020529. doi:10.1101/cshperspect.a020529

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682. doi:10.1038/nrn1746

    Article  CAS  PubMed  Google Scholar 

  8. Morrissey TK, Levi AD, Nuijens A, Sliwkowski MX, Bunge RP (1995) Axon-induced mitogenesis of human Schwann cells involves heregulin and p185erbB2. Proc Natl Acad Sci U S A 92(5):1431–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Birchmeier C, Nave KA (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56(14):1491–1497. doi:10.1002/glia.20753

    Article  PubMed  Google Scholar 

  10. Maurel P, Salzer JL (2000) Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. The Journal of neuroscience : the official journal of the Society for Neuroscience 20(12):4635–4645

    CAS  Google Scholar 

  11. Chen P, Cescon M, Bonaldo P (2015) The role of collagens in peripheral nerve myelination and function. Mol Neurobiol 52(1):216–225. doi:10.1007/s12035-014-8862-y

    Article  CAS  PubMed  Google Scholar 

  12. Heller BA, Ghidinelli M, Voelkl J, Einheber S, Smith R, Grund E, Morahan G, Chandler D et al (2014) Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system. J Cell Biol 204(7):1219–1236. doi:10.1083/jcb.201307057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bschor T (2014) Lithium in the treatment of major depressive disorder. Drugs 74(8):855–862. doi:10.1007/s40265-014-0220-x

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Li Q, Du X, Sun Y, Wang X, Kroemer G, Blomgren K, Zhu C (2011) Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells. J Cereb Blood Flow Metab 31(10):2106–2115. doi:10.1038/jcbfm.2011.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cabrera O, Dougherty J, Singh S, Swiney BS, Farber NB, Noguchi KK (2014) Lithium protects against glucocorticoid induced neural progenitor cell apoptosis in the developing cerebellum. Brain Res 1545:54–63. doi:10.1016/j.brainres.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  16. De Sarno P, Axtell RC, Raman C, Roth KA, Alessi DR, Jope RS (2008) Li prevents and ameliorates experimental autoinmune encephalomyelitis. J Immunol 181(1):338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huo K, Sun Y, Li H, Du X, Wang X, Karlsson N, Zhu C, Blomgren K (2012) Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol Cell Neurosci 51(1–2):32–42. doi:10.1016/j.mcn.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  18. Yang ML, Li JJ, So KF, Chen JY, Cheng WS, Wu J, Wang ZM, Gao F et al (2012) Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: a double-blind, randomized, placebo-controlled clinical trial. Spinal Cord 50(2):141–146. doi:10.1038/sc.2011.126

    Article  CAS  PubMed  Google Scholar 

  19. Dill J, Wang H, Zhou F, Li S (2008) Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. The Journal of neuroscience : the official journal of the Society for Neuroscience 28(36):8914–8928. doi:10.1523/JNEUROSCI.1178-08.2008

    Article  CAS  Google Scholar 

  20. Lazzara CA, Kim YH (2015) Potential application of lithium in Parkinson’s and other neurodegenerative diseases. Front Neurosci 9:403. doi:10.3389/fnins.2015.00403

    Article  PubMed  PubMed Central  Google Scholar 

  21. Diniz BS, Machado-Vieira R, Forlenza OV (2013) Lithium and neuroprotection: translational evidence and implications for the treatment of neuropsychiatric disorders. Neuropsychiatr Dis Treat 9:493–500. doi:10.2147/NDT.S33086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Makoukji J, Belle M, Meffre D, Stassart R, Grenier J, Shackleford G, Fledrich R, Fonte C et al (2012) Lithium enhances remyelination of peripheral nerves. Proc Natl Acad Sci U S A 109(10):3973–3978. doi:10.1073/pnas.1121367109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin YC, Oh SJ, Marra KG (2013) Synergistic lithium chloride and glial cell line-derived neurotrophic factor delivery for peripheral nerve repair in a rodent sciatic nerve injury model. Plast Reconstr Surg 132(2):251e–262e. doi:10.1097/PRS.0b013e31829588cf

    Article  CAS  PubMed  Google Scholar 

  24. Yoshino JE, DeVries GH (1987) Effect of lithium on Schwann cell proliferation stimulated by axolemma- and myelin-enriched fractions. J Neurochem 48(4):1270–1277

    Article  CAS  PubMed  Google Scholar 

  25. Ogata T, Iijima S, Hoshikawa S, Miura T, Yamamoto S, Oda H, Nakamura K, Tanaka S (2004) Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. The Journal of neuroscience : the official journal of the Society for Neuroscience 24(30):6724–6732. doi:10.1523/JNEUROSCI.5520-03.2004

    Article  CAS  Google Scholar 

  26. Meffre D, Grenier J, Bernard S, Courtin F, Dudev T, Shackleford G, Jafarian-Tehrani M, Massaad C (2014) Wnt and lithium: a common destiny in the therapy of nervous system pathologies? Cell Mol Life Sci 71(7):1123–1148. doi:10.1007/s00018-013-1378-1

    Article  CAS  PubMed  Google Scholar 

  27. Morrissey TK, Kleitman N, Bunge RP (1991) Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. The Journal of neuroscience : the official journal of the Society for Neuroscience 11(8):2433–2442

    CAS  Google Scholar 

  28. Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I Establishment of purified populations from cultures of peripheral nerve Brain Res 165(1):105–118

    CAS  PubMed  Google Scholar 

  29. Monje PV, Rendon S, Athauda G, Bates M, Wood PM, Bunge MB (2009) Non-antagonistic relationship between mitogenic factors and cAMP in adult Schwann cell re-differentiation. Glia 57(9):947–961. doi:10.1002/glia.20819

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bacallao K, Monje PV (2015) Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination. PLoS One 10(2):e0116948. doi:10.1371/journal.pone.0116948

    Article  PubMed  PubMed Central  Google Scholar 

  31. Monje PV, Soto J, Bacallao K, Wood PM (2010) Schwann cell dedifferentiation is independent of mitogenic signaling and uncoupled to proliferation: role of cAMP and JNK in the maintenance of the differentiated state. J Biol Chem 285(40):31024–31036. doi:10.1074/jbc.M110.116970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L (2004) Cell viability assays. In: Sittampalam GS, Coussens NP, Nelson H et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda (MD)

    Google Scholar 

  33. Monje PV, Bartlett Bunge M, Wood PM (2006) Cyclic AMP synergistically enhances neuregulin-dependent ERK and Akt activation and cell cycle progression in Schwann cells. Glia 53(6):649–659. doi:10.1002/glia.20330

    Article  PubMed  Google Scholar 

  34. Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987) Differentiation of axon-related Schwann cells in vitro. I Ascorbic acid regulates basal lamina assembly and myelin formation The Journal of cell biology 105(2):1023–1034

    CAS  PubMed  Google Scholar 

  35. Bacallao K, Monje PV (2013) Opposing roles of PKA and EPAC in the cAMP-dependent regulation of schwann cell proliferation and differentiation [corrected]. PLoS One 8(12):e82354. doi:10.1371/journal.pone.0082354

    Article  PubMed  PubMed Central  Google Scholar 

  36. Syed N, Reddy K, Yang DP, Taveggia C, Salzer JL, Maurel P, Kim HA (2010) Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. The Journal of neuroscience : the official journal of the Society for Neuroscience 30(17):6122–6131. doi:10.1523/jneurosci.1681-09.2010

    Article  CAS  Google Scholar 

  37. Sobue G, Shuman S, Pleasure D (1986) Schwann cell responses to cyclic AMP: proliferation, change in shape, and appearance of surface galactocerebroside. Brain Res 362(1):23–32

    Article  CAS  PubMed  Google Scholar 

  38. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L et al (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181(4):625–637. doi:10.1083/jcb.200803013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morgan L, Jessen KR, Mirsky R (1991) The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol 112(3):457–467

    Article  CAS  PubMed  Google Scholar 

  40. Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56(14):1552–1565. doi:10.1002/glia.20761

    Article  PubMed  Google Scholar 

  41. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531. doi:10.1113/JP270874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mirsky R, Dubois C, Morgan L, Jessen KR (1990) 04 and A007-sulfatide antibodies bind to embryonic Schwann cells prior to the appearance of galactocerebroside; regulation of the antigen by axon-Schwann cell signals and cyclic AMP. Development (Cambridge, England) 109(1):105–116

    CAS  Google Scholar 

  43. Azim K, Butt AM (2011) GSK3beta negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59(4):540–553. doi:10.1002/glia.21122

    Article  PubMed  Google Scholar 

  44. Holstein-Rathlou NH (1990) Lithium transport across biological membranes. Kidney Int Suppl 28:S4–S9

    CAS  PubMed  Google Scholar 

  45. Timmer RT, Sands JM (1999) Lithium intoxication. Journal of the American Society of Nephrology : JASN 10(3):666–674

    CAS  PubMed  Google Scholar 

  46. Iurinskaia VE, Moshkov AV, Goriachaia TS, Vereninov AA (2013) Li/Na exchange and Li active transport in human lymphoid cells U937 cultured in lithium media. Tsitologiia 55(10):703–712

    CAS  PubMed  Google Scholar 

  47. Dudev T, Lim C (2011) Competition between Li+ and Mg2+ in metalloproteins. Implications for lithium therapy. J Am Chem Soc 133(24):9506–9515. doi:10.1021/ja201985s

    Article  CAS  PubMed  Google Scholar 

  48. Pan JQ, Lewis MC, Ketterman JK, Clore EL, Riley M, Richards KR, Berry-Scott E, Liu X et al (2011) AKT kinase activity is required for lithium to modulate mood-related behaviors in mice. Neuropsychopharmacology 36(7):1397–1411. doi:10.1038/npp.2011.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ et al (2008) A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132(1):125–136. doi:10.1016/j.cell.2007.11.041

    Article  CAS  PubMed  Google Scholar 

  50. Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. doi:10.1016/j.pharmthera.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  51. Hoppler S, Kavanagh C (2006) Wnt signalling: variety at the core. J Cell Sci 120:385–393. doi:10.1242/jcs

    Article  Google Scholar 

  52. Lien WH, Fuchs E (2014) Wnt some lose some: transcriptional governance of stem cells by Wnt/beta-catenin signaling. Genes Dev 28(14):1517–1532. doi:10.1101/gad.244772.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tawk M, Makoukji J, Belle M, Fonte C, Trousson A, Hawkins T, Li H, Ghandour S et al (2011) Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(10):3729–3742. doi:10.1523/JNEUROSCI.4270-10.2011

    Article  CAS  Google Scholar 

  54. Pizarro JG, Folch J, Esparza JL, Jordan J, Pallas M, Camins A (2009) A molecular study of pathways involved in the inhibition of cell proliferation in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286. J Cell Mol Med 13(9B):3906–3917. doi:10.1111/j.1582-4934.2008.00389.x

    Article  PubMed  Google Scholar 

  55. Trnski D, Sabol M, Gojevic A, Martinic M, Ozretic P, Musani V, Ramic S, Levanat S (2015) GSK3beta and Gli3 play a role in activation of Hedgehog-Gli pathway in human colon cancer—targeting GSK3beta downregulates the signaling pathway and reduces cell proliferation. Biochim Biophys Acta 1852(12):2574–2584. doi:10.1016/j.bbadis.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  56. Zassadowski F, Pokorna K, Ferre N, Guidez F, Llopis L, Chourbagi O, Chopin M, Poupon J et al (2015) Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent. Leukemia 29(12):2277–2284. doi:10.1038/leu.2015.159

    Article  CAS  PubMed  Google Scholar 

  57. Hongisto V, Smeds N, Brecht S, Herdegen T, Courtney MJ, Coffey ET (2003) Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol Cell Biol 23(17):6027–6036. doi:10.1128/mcb.23.17.6027-6036.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jin N, Kovacs AD, Sui Z, Dewhurst S, Maggirwar SB (2005) Opposite effects of lithium and valproic acid on trophic factor deprivation-induced glycogen synthase kinase-3 activation, c-Jun expression and neuronal cell death. Neuropharmacology 48(4):576–583. doi:10.1016/j.neuropharm.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  59. Parkinson DB, Bhaskaran A, Droggiti A, Dickinson S, D’Antonio M, Mirsky R, Jessen KR (2004) Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J Cell Biol 164(3):385–394. doi:10.1083/jcb.200307132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meffre D, Massaad C, Grenier J (2015) Lithium chloride stimulates PLP and MBP expression in oligodendrocytes via Wnt/beta-catenin and Akt/CREB pathways. Neuroscience 284:962–971. doi:10.1016/j.neuroscience.2014.10.064

    Article  CAS  PubMed  Google Scholar 

  61. Li J, Khavandgar Z, Lin SH, Murshed M (2011) Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3- independent mechanism. Bone 48(2):321–331. doi:10.1016/j.bone.2010.09.033

    Article  CAS  PubMed  Google Scholar 

  62. Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J, Macias-Camara N et al (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210(1):153–168. doi:10.1083/jcb.201503019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Monje PV, Athauda G, Wood PM (2008) Protein kinase A-mediated gating of neuregulin-dependent ErbB2-ErbB3 activation underlies the synergistic action of cAMP on Schwann cell proliferation. J Biol Chem 283(49):34087–34100. doi:10.1074/jbc.M802318200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arthur-Farraj P, Wanek K, Hantke J, Davis CM, Jayakar A, Parkinson DB, Mirsky R, Jessen KR (2011) Mouse schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 59(5):720–733

    Article  PubMed  Google Scholar 

  65. Mann L, Heldman E, Shaltiel G, Belmaker RH, Agam G (2008) Lithium preferentially inhibits adenylyl cyclase V and VII isoforms. Int J Neuropsychopharmacol 11(4):533–539. doi:10.1017/S1461145707008395

    Article  CAS  PubMed  Google Scholar 

  66. Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59(3):411–419

  67. Brown K, Tracy D (2013) Lithium: the pharmacodynamic actions of the amazing ion. Therapeutic Advances in Psychopharmacology 3(3):163–176. doi:10.1177/2045125312471963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170(7):1101–1111. doi:10.1083/jcb.200504035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B et al (2012) C-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75(4):633–647. doi:10.1016/j.neuron.2012.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Monje PV (2015) To myelinate or not to myelinate: fine tuning cAMP signaling in Schwann cells to balance cell proliferation and differentiation. Neural Regen Res 10(12):1936–1937. doi:10.4103/1673-5374.169622

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fang XY, Zhang WM, Zhang CF, Wong WM, Li W, Wu W, Lin JH (2016) Lithium accelerates functional motor recovery by improving remyelination of regenerating axons following ventral root avulsion and reimplantation. Neuroscience 329:213–225. doi:10.1016/j.neuroscience.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  72. Nouri M, Rasouli MR, Rahimian R, Asadi-Amoli F, Dehpour AR (2009) Lithium improves regeneration after sciatic nerve traumatic injury in rat. J Reconstr Microsurg 25(2):151. doi:10.1055/s-0028-1103504

    Article  PubMed  Google Scholar 

  73. Fu R, Tang Y, Ling ZM, Li YQ, Cheng X, Song FH, Zhou LH, Wu W (2014) Lithium enhances survival and regrowth of spinal motoneurons after ventral root avulsion. BMC Neurosci 15:84. doi:10.1186/1471-2202-15-84

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the excellent technical support provided by Jennifer Soto and Ketty Bacallao with neuronal cell cultures. We kindly acknowledge the assistance provided by Vladimir Camarena and Gaofeng Wang with IncuCyte microscopy, Melissa Carballosa with ImageJ software, and Yan Shi with automated fluorescence microscopy. This work was supported by NIH-NINDS (NS084326), The Craig H. Neilsen Foundation, The Miami Project to Cure Paralysis, and The Buoniconti Fund. G.P. was a recipient of a CONICET/BecAr fellowship (Argentina).

Authors’ Contributions

G.P. and P.V.M. designed the study and wrote the manuscript; G.P., R.B, and N.D.A performed experiments; G.P., N.D.A., P.S., and P.V.M. analyzed and interpreted data. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Virginia Monje.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piñero, G., Berg, R., Andersen, N. et al. Lithium Reversibly Inhibits Schwann Cell Proliferation and Differentiation Without Inducing Myelin Loss. Mol Neurobiol 54, 8287–8307 (2017). https://doi.org/10.1007/s12035-016-0262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0262-z

Keywords

Navigation