Skip to main content

Advertisement

Log in

A minimum data set approach to post-mortem computed tomography reporting for anthropological biological profiling

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Anthropological examination of bones is routinely undertaken in medico-legal investigations to establish an individual’s biological profile, particularly their age. This often requires the removal of soft tissue from bone (de-fleshing), which, especially when dealing with the recently deceased, is a time consuming and invasive procedure. Recent advances in multi-detector computed tomography have made it practical to rapidly acquire high-resolution morphological skeletal information from images of “fleshed” remains. The aim of this study was to develop a short standard form, created from post-mortem computed tomography images, that contains the minimum image-set required to anthropologically assess an individual. The proposed standard forms were created for 31 juvenile forensic cases with known age-at-death, spanning the full age range of the developing human. Five observers independently used this form to estimate age-at-death. All observers estimated age in all cases, and all estimations were within the accepted ranges for traditional anthropological and odontological assessment. This study supports the implementation of this approach in forensic radiological practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rutty GN, Brogdon G, Dedouit F, Grabherr S, Hatch GM, Jackowski C, Leth P, Persson A, Ruder TD, Shiotani S, Takahashi N, Thali MJ, Woźniak K, Yen K, Morgan B. Terminology used in publications for post-mortem cross-sectional imaging. Int J Legal Med. 2013;127:465–6.

    Article  PubMed  Google Scholar 

  2. Cavalcanti MGP, Rocha SS, Vannier MW. Craiofacial measurements based on 3D-CT volume rendering: implications for clinical applications. Dentomaxillofac. Radiol. 2004;33:170–6.

    Article  CAS  PubMed  Google Scholar 

  3. Robinson C, Eisma R, Morgan B, Jeffery A, Graham AM, Black S, et al. Anthropological measurement of lower limb and foot bones using multi-detector computed tomography. J Forensic Sci. 2008;53(6):1289–95.

    PubMed  Google Scholar 

  4. Verhoff MA, Ramsthaler F, Krahahn J, Deml U, Gille RJ, Grabherr S, et al. Digital forensic osteology—possibilities in cooperation with the virtopsy project. Forensic Sci Int. 2008;174:152–6.

    Article  PubMed  Google Scholar 

  5. Dedouit F, Telmon N, Costagliola R, Otal P, Florence LL, Joffre F, et al. New identification possibilities with postmortem multislice computed tomography. Int. Legal Med. 2007;121:507–10.

    Article  Google Scholar 

  6. Brough AL, Bennett J, Morgan B, Black S, Rutty GN. Anthropological measurement of the juvenile clavicle using multi-detector computed tomography-affirming reliability. J Forensic Sci. 2013;58:946–51.

    Article  PubMed  Google Scholar 

  7. Brough AL, Morgan B, Black S, Adams C, Rutty GN. Post mortem computed tomography age assessment of juvenile dentition: comparison against traditional OPT assessment. Int J Legal Med. 2014. doi:10.1007/s00414-013-0952-2.

    PubMed  Google Scholar 

  8. INTERPOL. General information-priorities. http://www.interpol.int/INTERPOL-expertise/Forensics/DVI-Pages/Forms. Accessed 26 Jan 2014.

  9. Sidler M, Jackowski C, Dirnhofer R, Vock P, Thali M. Use of multislice computed tomography in disaster victim identification advantages and limitations. Forensic Sci Int. 2007;169(2–3):118–28.

    Article  PubMed  Google Scholar 

  10. Rutty GN, Robinson C, Morgan B, Black S, Adams C, Webster P. Famine: the United Kingdom disaster victim/forensic identification imaging system. J Forensic Sci. 2009;54(6):1438–42.

    Article  PubMed  Google Scholar 

  11. Verhoff MA, Ramsthaler F, Krahahn J, Deml U, Gille RJ, Grabber S, et al. Digital forensic osteology-possibilities in cooperation with the virtopsy project. Forensic Sci Int. 2008;174:152–6.

    Article  PubMed  Google Scholar 

  12. Scheuer L, Black S. Developmental juvenile osteology. San Diego: Academic Press; 2000.

    Google Scholar 

  13. Cunha E, Baccino E, Martille L, Ramsthaler F, Prieto J, Schuliar Y, et al. The problem of ageing human remains and living individuals: a review. Forensic Sci Int. 2009;193:1–13.

    Article  CAS  PubMed  Google Scholar 

  14. Garvin HM, Passalacqua NV. Current practices by forensic anthropologists in adult skeletal age estimation. J Forensic Sci. 2012;57:427–33.

    Article  PubMed  Google Scholar 

  15. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schutz HW, Kitsch HJ, et al. Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med. 2000;113:129–36.

    Article  CAS  PubMed  Google Scholar 

  16. Buikstra JE, Ubelaker, DH, editors. Standards for data collection from human skeletal remains. Research series no 44. Fayetteville: Arkansas Archaeological Survey; 1994.

  17. Demirjian A. A new system of dental age assessment. Hum Biol. 1973;45(2):211.

    CAS  PubMed  Google Scholar 

  18. AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol. 2010;142(3):481–90.

    Article  CAS  PubMed  Google Scholar 

  19. Kosa F. Age estimation from the fetal skeleton. In: Iscan MY, editor. Age markers in the human skeleton. Springfield, IL: Carles C Thomas; 1989. p. 21–54.

    Google Scholar 

  20. Frazakas IG, Kosa F. Forensic fetal osteology. Budapest, Hungary: Aksdemiai, Kiado; 1978.

    Google Scholar 

  21. Demirjian A, Goldstein H. New systems for dental maturity based on seven and four teeth. Ann Hum Biol. 1976;3(5):411–21.

    Article  CAS  PubMed  Google Scholar 

  22. Maresh MM, Deming J. The growth of the long bones in 80 infants. Roentgenograms versus anthropometry. Child Dev. 1939;10:91–106.

    Google Scholar 

  23. Greulich W, Pyle SI. Radiographic atlas of skeletal development of the human hand and wrist. 2nd ed. Stanford: Stanford University Press; 1959.

    Google Scholar 

  24. Tanner JM, Whitehouse RH, Marshall WA, Healy MJR, Goldstein H. Assessment of skeletal maturity and prediction of adult height (TW2 method). London: Academic Press; 1975.

    Google Scholar 

  25. Mincer HH, Harris EF, Berryman HE. The A.B.F.O. study of third molar development and its use as an estimator of chronological age. J Forensic Sci. 1993;38:379–90.

    CAS  PubMed  Google Scholar 

  26. Madeline LA, Elster AD. Suture closure in the human chondrocranium: CT assesment. Radiology. 1995;196(3):747–56.

    Article  CAS  PubMed  Google Scholar 

  27. Bland JM, Altman DJ. Statistics notes: measurement error. BMJ. 1996;312(7047):1654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Saunders SR, Fitzgerald C, Rogers T, Dudar C, McKillop H. A test of several methods of skeletal age estimation using a documented archaeological sample. Can. Soc. Forensic Sci. J. 1992;2:97–118.

    Article  Google Scholar 

  29. Bedford ME, Russell KF, Lovejoy CO, Menial RS, Simpson SW, Stuart-Macadam PL. Test of the multifactorial aging method using skeletons with known ages-at-death from the grant collection. Am J Phys Anthropol. 1993;91:287–97.

    Article  CAS  PubMed  Google Scholar 

  30. Fairgrieve SI, Oost TS, et al. On a test of the multifactorial aging method by Bedford et al. (1993). Am J Phys Anthropol. 1995;97:83–5.

    Article  CAS  PubMed  Google Scholar 

  31. Nagar Y, Hershkovitz I. Interrelationships between various aging methods, and their relevance to palaeodemography. Hum. Evol. 2004;19:145–56.

    Article  Google Scholar 

  32. Franklin D. Forensic age estimation in human skeletal remains: current concepts and future directions. Leg Med. 2010;12:1–7.

    Article  Google Scholar 

  33. Morgan B, Sakamoto N, Shiotani S, Grabherr S. Postmortem computed tomography (PMCT) scanning with angiography (PMCTA): a description of three distinct methods. In: Rutty GN, editor. Essentials of autopsy practice. London: Springer; 2013. p. 1–22.

    Google Scholar 

  34. Germerott T, Preiss US, Ebert LC, Ruder TD, Ross S, Flach PM, Ampanozi G, Filograna L, Thali MJ. A new approach in virtopsy: postmortem ventilation in multislice computed tomography. Leg. Med. (Tokyo). 2010;12:276–9.

    Article  Google Scholar 

  35. Germerott T, Flach PM, Preiss US, Ross SG, Thali MJ. Postmortem ventilation: a new method for improved detection of pulmonary pathologies in forensic imaging. Leg. Med. (Tokyo). 2012;14(5):223–8.

    Article  Google Scholar 

  36. Germerott T, Preiss US, Ross SG, Thali MJ, Flach PM. Postmortem ventilation in cases of penetrating gunshot and stab wounds to the chest. Leg. Med. (Tokyo). 2013;15:298–302.

    Article  Google Scholar 

  37. Robinson C, Biggs MJ, Amoroso J, Pakkal M, Morgan B, Rutty GN. Post-mortem computed tomography ventilation; simulating breath holding. Int J Legal Med. 2014;128:139–46.

    Article  CAS  PubMed  Google Scholar 

  38. Rutty GN, Alminyah A, Cala A, Elliot D, Fowler D, Hofman P, et al. Use of radiology in disaster victim identification: positional statement of the members of the disaster victim identification working group of the international society of forensic radiology and imaging. J. Forensic Radiol. Imaging. 2013;1(4):218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Brough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brough, A.L., Morgan, B., Robinson, C. et al. A minimum data set approach to post-mortem computed tomography reporting for anthropological biological profiling. Forensic Sci Med Pathol 10, 504–512 (2014). https://doi.org/10.1007/s12024-014-9581-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-014-9581-4

Keywords

Navigation